在线客服
首页 > 技术文章 >
技术文章
技术文章

性能指标和考虑因素

下面是描述混合信号源性能的部分参数定义。在手册、参考资料、教材等几乎任何介绍信号源或应用的资料中,都可以看到这些指标。

内存深度(记录长度)

        内存深度或记录长度和时钟频率关系密切。内存深度决定着可以存储的最大样点数量。每个波形样点占用一个内存位置。每个位置等于应是当前时钟频率的时间的取样间隔。例如,如果时钟以100 MHz 频率运行,那么存储的样点间隔为10 ns。

        内存深度在许多频率的信号保真度中发挥着重要作用,因为它决定着可以存储多少个数据点来定义一个波形。特别是在复杂波形中,内存深度对精确地复现信号细节非常关键。提高内存深度的优点可以概括如下:可以存储更多的希望波形周期,内存深度和信号源的排序功能相结合,使仪器可以灵活地把不同波形组合在一起,产生无穷大的循环、码型等等。

        可以存储更多的波形细节。复杂的波形可能会在脉冲边沿和瞬变中包含高频信息。插补这些快速瞬变非常困难。为真正地复现复杂的信号,可以使用提供的波形内存容量,存储更多的瞬变和波动,而不是周期更多的信号。

        高性能混合信号源提供深内存深度和高取样速率。这些仪器可以存储和复制复杂的波形,如伪随机码流。类似的,这些具有深内存的快速信号源可以生成非常简单的数字脉冲和瞬变。

取样(时钟)速率

        取样速率通常用每秒兆样点或千兆样点表示,指明了仪器可以工作的最大时钟或取样速率。取样速率影响着主输出信号的频率和保真度。奈奎斯特取样定理规定,取样频率或时钟速率必须至少要比生成的信号最高的频谱频率成分高两倍,以保证精确地复现信号。例如,为生成1 MHz 正弦波信号,必须以大于2 兆样点/ 秒(MS/s)的频率生成样点。尽管这一定理通常只是作为采集的指导原则使用,但与示波器一样,它与信号源的相关性非常明显:存储的波形必须有足够的样点,以真实地再现希望的信号细节。

        信号源可以获得这些样点,以指定极限内的任何频率读取内存。如果一套存储的样点符合奈奎斯特定理,并描述一个正弦波,那么信号源将相应地对波形滤波,并输出一个正弦波。

        计算信号源可以生成的波形的频率需要对几个简单的公式求解。我们以在内存中存储了一个波形周期的仪器为例:

假设时钟频率为100 MS/s,内存深度或记录长度为4000 个样点。那么:
F 输出 = 时钟频率 ÷ 内存深度
F 输出 = 100,000,000 ÷ 4000
F 输出 = 25,000 Hz (或25 kHz)

        图21 说明了这一概念。在规定的时钟频率上,样点间隔约为10 ns。这是波形的时间分辨率(水平)。注意,不要把这个概念与幅度分辨率(垂直)相混淆。更进一步,假设样点RAM包含的不是一个周期的波形、而是四个周期的波形。

F 输出 = (时钟频率 ÷ 内存深度) x (内存中的周期数)
F 输出 = (100,000,000 ÷ 4000) x (4)
F 输出 =(25,000 Hz) x (4)
F 输出 = 100,000 Hz

        新频率是100 kHz。图22 说明了这一概念。在本例中,每个波形周期的时间分辨率低于单波形实例,事实上,它正好是较低值的四倍。每个样点现在代表的时间是40 ns。时间的提高是以某些水平分辨率为代价得到的。

带宽

        仪器的带宽是一种独立于取样速率的模拟指标。信号源输出电路的模拟带宽必须足以处理其取样速率将要支持的最大频率。换句话说,必须有足够的带宽,传送内存时钟输出的最高频率和转换时间,而不会使信号特点劣化。在图23中,示波器显示图揭示了充足带宽的重要性。最上面的轨迹表示高带宽信号源没有劣化的上升时间,其余轨迹则表示因较小的输出电路设计而导致的劣化效应。

垂直(幅度)分辨率

        在混合信号源中,垂直分辨率适用于仪器DAC 的二进制字长度(以位为单位),位数越高,分辨率越高。DAC 的垂直分辨率决定着复现的波形的幅度精度和失真。分辨率不足的DAC 会产生量化误差,导致不完美的波形输出。尽管越高越好,但在AWG中,频率较高的仪器通常比通用仪器(12位或14位)提供较低的分辨率(8位或10位)。10位分辨率的AWG提供了1024种取样水平,其分布在仪器的整个电压范围内。例如,如果这个10位AWG拥有2 VP-P 的总电压范围,那么每个样点表示大约2 mV 的步进,这是仪器在不使用额外衰减器时可以提供的最小增量,其中假设它不受到结构中其它因素的限制,如输出放大器增益和偏移。

水平(定时)分辨率

        水平分辨率表示生成波形可以使用的最小时间增量。一般来说,这一数字是通过下述公式计算得出:T = 1/F其中T 是以秒表示的定时分辨率,F 是取样频率。根据这一定义,最大时钟速率为100 MHz 的信号源的定时分辨率为10 ns。换句话说,这一混合信号源的输出波形特性通过间隔为10 ns 的一串步进定义。

        某些仪器提供了可以明显扩大输出波形有效定时分辨率的工具。尽管它们不提高仪器的基本分辨率,但这些工具在波形中增加变化,复现以ps级增量移动边沿的效果。区域位移区域位移功能朝着或离开编程的中心值、向右或向左移动指定的波形边沿。如果指定的位移数量低于取样间隔,那么将使用数据插补推导出位移值,对原始波形重新取样。

        区域位移使得生成超出仪器分辨率的模拟抖动条件及其它细微的边沿位置变化成为可能。我们仍以采用100 MHz时钟的信号源为例,以10 ns增量位移激励源边沿、模拟抖动效应是没有意义的。实际抖动在低达几皮秒的范围内运行。区域位移使得每步把边沿位移几皮秒成为可能,这要远远更加接近实际抖动现象。

输出通道

        许多应用要求信号源提供一条以上的输出通道。例如,测试汽车防抱死制动系统要求四个激励信号(原因很明显)。生物物理学研究应用要求多个信号源,模拟人体产生的各种电信号。复杂的IQ 调制电信设备要求对两个相位中的每个相位使用一个单独的信号。

        为满足这些需求,已经出现了各种AWG输出通道配置。某些AWG可以提供由全带宽模拟激励信号组成的最多四条独立通道。其它AWG 则提供了最多两个模拟输出,辅以混合信号测试使用的最多16 条高速数字输出。后一种工具可以仅通过一台集成仪器,处理器件的模拟、数据和地址总线测试需求。

数字输出

        某些AWG 包括单独的数字输出,这些输出分为两类:标记输出和并行数据输出。标记输出提供了与信号源的主模拟输出信号同步的二进制信号。一般来说,标记允许输出与某个波形内存位置(样点)同步的一个脉冲(或多个脉冲)。标记脉冲可以用来同步DUT的数字部分,DUT的数字部分同时从混合信号源中接收模拟激励信号。同样重要的是,标记可以在DUT的输出侧触发采集仪器。

        标记输出一般从独立于主波形内存的存储器中驱动。并行数字输出从与信号源主模拟输出相同的内存中提取数字数据。在模拟输出上存在某个波形样点值时,将在并行数字输出上提供同等的数字值。可以随时使用这些数字信息,在测试数模转换器及其它器件时作为比较数据使用。也可以独立于模拟输出,对数字输入进行编程。

滤波

        一旦定义了基本波形,可以使用其它操作(如滤波和排序),分别修改或扩展波形。滤波允许从信号中去掉选择的频段成分。例如,在测试模数转换器(ADC)时,必需保证来自信号源的模拟输入信号没有高于转换器时钟频率一半的频率。这可以防止
DUT输入中不想要的混淆失真,否则会损害测试结果。混淆是在感兴趣的频率范围内插入失真的转换副产物。DUT的输出产生混淆将使测试结果失去意义。

        消除这些频率的一种可靠方式是对波形使用过渡陡峭的低通滤波器,允许低于指定点的频率通过,并大幅度衰减超过截止频率的频率。也可以使用滤波器,重新对波形整形,如方形波和三角形波。有时,通过这种方式修改现有波形要比生成新波形更加简单。在过去,必需使用信号发生器和外部滤波器,才能获得这些结果。幸运的是,当前许多高性能信号源具有可以控制的内置滤波器。

排序

        通常必需创建长波形文件,以全面测试DUT。如果有的波形部分重复,那么波形排序功能可以节约大量繁琐的、内存密集型波形编程工作。通过排序,可以在仪器内存中存储数量庞大的“虚拟”波形循环。波形排序器借用了计算机领域中的命令,如循环、跳转等。

        这些命令装在与波形内存不同的序列内存中,使波形内存的指定段发生重复。可编程的重复计数器、外部事件转移和其它控制机制决定着工作循环的数量及其发生的顺序。通过序列控制器,可以生成长度几乎无限的波形。举一个简单的实例,想象一下4000 点的内存装上一个干净的脉冲和一个失真的脉冲,前者占用一半内存(2000点),后者占用其余一半内存。如果我们局限于内存内容的基本重复,信号源将一直依次重复两个

北京迪阳世纪科技有限责任公司 版权所有 © 2008 - 2018 著作权声明
010-62156134 62169728 13301007825 节假日:13901042484 微信号:sun62169728
地址:北京市西城阜外百万庄扣钟北里7号公寓
E_mail:sales@pc17.com.cn 传真: 010-68328400
京ICP备05038211号 公备110108007750