
Beagle High Speed USB 480 Protocol Analyzer Features

 Non-intrusive high-, full-, and low-speed monitoring

 Monitor packetsin real-time as theyappear on thebus

 Large64MB onboard hardwarebuffer

 Digital inputs and outputsfor synchronizing withexternal logic

 Repetitive packet compression

 Packet-level timing with 16.6 ns resolution

 Linux and Windows compatible

Beagle USB 12 Protocol Analyzer Features

 Non-intrusive full-, low-speed monitoring (12 and 1.5 Mbps)

 Monitor packetsin real-time as theyappear on thebus

 Repetitive packet compression

 Bit-level timing with 21 ns resolution

 High-speed USB uplink to analysis computer

 Linux and Windows compatible

BeagleI
2

C/SPI/MDIOProtocol Analyzer Features

Non-intrusiveI
2

Cmonitoringupto4MHz

•

 Non-intrusive SPI monitoring up to 24 MHz

 Non-intrusive MDIO monitoring up to 2.5 MHz

 Monitor packetsin real-time as theyappear on thebus.

 User selectable bit-level timing (up to 20 ns resolution)

 High-speed USB uplink to analysis computer

 Linux and Windows compatible

Summary

The Beagle
TM

Protocol Analyzers are non-intrusive debugging tools. Developers canwatch datain real-time as they

occur. The datais appropriately parsedfor the protocolof interest. Like allTotal Phase products, the Beagle

analyzerisa low-cost, cross-platformdevicefor Windows and Linux.

Beagle
Protocol Analyzers

Data Sheet v3.02January28, 2008

www.pc17.com.cn ©2005–2008Total Phase, Inc.

1 General Overview

1.1 USB Background

USB History

UniversalSerialBus(USB)isa standard interfacefor connectingperipheraldevicestoahost computer. The USB

systemwas originallydevisedby agroupof companies including Compaq, Digital Equipment, IBM, Intel, Microsoft, and

Northern Telecom to replace the existing mixed connector system with a simpler architecture.

USB was designed to replace the multitude of cables and connectors required to connect pe-ripheral devices to a

host computer. The main goal of USB was to make the addition of pe-ripheral devices quickand easy. All USB

devices share somekeycharacteristics to make this possible.AllUSBdevicesare

self-identifyingonthebus.Alldevicesare hot-pluggabletoallow for true Plug’n’Playcapability. Additionally, some

devices can draw power from the USB which eliminates the needforextrapower adapters.

To ensure maximum interoperability the USB standard de □ nes all aspects of the USB system

fromthephysicallayer (mechanicalandelectrical)allthewayuptothesoftwarelayer.TheUSB standard is maintained

and enforcedbythe USB Implementer’sForum (USB-IF). USB devices must pass a USB-IF compliance test in order

to be considered in compliance and to be able to use the USB logo.

The USB standard speci□es different □avors of USB: low-speed, full-speed and high-speed. USB-IF has also

released additional specs that expand the breadth of USB. These are On-The-Go (OTG) and Wireless USB.

Although beyond the scope of this document, details on these specs canbefound on the USB-IFwebsite.

Thekeydifference betweenlow, full, and high speedis bandwidth.

Low 1.5 Mbps

Full 12 Mbps

High 480 Mbps

The USB speci□cation can be viewed and downloaded on the USB-IF website.

Architectural Overview

USBisa host-scheduled, token-based serialbus protocol. USB allowsfor the connectionofup to 127 devices on a

single USB host controller. A host PC can have multiple host controllers which increases the maximum number of

USB devices that can be connected to a single com-puter.

Devices can be connected and disconnected at will. The host PC is responsiblefor installing and

uninstallingdriversfor the USBdevices on an as-needed basis.

Asingle USB system comprises of a USB host and one or more USB devices. There can also bezero or more USB

hubsin the system.AUSB hubis special classofdevice. The hub allows the connection of multiple downstream

devices to an upstream host or hub. In this way, the number of devices that can be physically connected to a

computer can be increased.

www.pc17.com.cn

AUSB device is a peripheral device that connects to the host PC. The range of functionality of USB devices is ever

increasing. The device can support either one function or manyfunctions. For example a single multi-function

printer maypresent several devices to the host when it is connected via USB.It can presentaprinterdevice,a

scannerdevice,afaxdevice, etc.

All the devices on a single USB must share the bandwidth that is available on thebus. It is possiblefora

hostPCtohavemultiplebuses whichwouldallhave theirown separate band-width. Most often, the ports on most

motherboards are paired, such that each bus has two downstream ports.

Figure1:Sample USB BusTopology.AUSB can only have a single USB host device. This host can support up to 127 different
devices on asingleport. Thereisan upper limitof7tiersofdevices which means thata maximumof5hubs canbeconnected inline.

The USB has a tiered star topology (Figure 1). At the root tier is the USB host. All devices connect to the host

either directly or via a hub. According to the USB spec, a USB host can only support a maximum of seven tiers.

Figure 2: USB Broadcast Ahost broadcasts information to all the devices below it. Low-speed and high-speed enabled devices
will only see traf□c at their respective speeds. Full-speed devices can see both their speed and low-speed traf□c.

USB works through a unidirectional broadcast system. When a host sends a packet, all down

www.pc17.com.cn

stream devices will see that traf□c. If the host wishes to communicate with a speci□c device, it

must include the address of the device in the token packet. Upstream traf□c (the response from

devices) are only seenbythe host or hubs that are directly on the return path to the host.

Thereare,however, afewcaveatswhen dealingwithdevicesthatareofdifferentspeeds.Low-speed

and high-speed devices are isolated from traf□c at speeds other then their own. They will only

see traf □ c that is at their respective speeds. Referring to Figure 2, this means that

downstreamtraf □ ctodeviceH1 willbe seenbydeviceH2(and viceversa). Also,downstream traf □

ctodeviceL1 willbe seenbyL2(and viceversa). However, full-speeddevices can see traf□c at its own

speed, as well as low-speed traf □ c, using a special signaling mode dubbed

low-speed-over-full-speed. This means that downstream traf□c to F1 will be seenbyF2 (and vice

versa) with standard full-speed signaling, and downstream traf□c to either L1 or L2 will also be

seenbybothF1 andF2 through the speciallow-speed-over-full-speed signaling.

Theoryof Operations

This introduction is a general summary of the USB spec. Total Phase strongly recommends that

developers consult the USB speci□cation on the USB-IF website for detailed and up-to-date

information.

USB Connectors

Figure3:USB Cable A USB cable has two different types of connectors: “A” and “B”. “A” connectors connect upstream
to-wards the Host and “B” connectors connect downstream to the Devices.

USB cables have two different types of connectors: “A” and “B”. “A” type connectors connect towards the host

or upstream direction. “B” connectors connect to downstream devices, though many devices have captive cables

eliminating the need for “B” connectors. The “A” and “B” connectorsare de□

nedintheUSBspectopreventloopbacksinthebus.Thispreventsahost from being connected to a host, or conversely a

device to a device. It also helps enforce the tieredstar

topologyofthebus.USBhubshaveone“B”portandmultiple“A”portswhichmakes it clear which port connects to the

host and which to downstream devices.

The USB spec has been expanded to include Mini-A and Mini-B connectors to support small USB devices. The USB

On-The-Go (OTG) spec has introduced the Micro-A plug, Micro-B plug

www.pc17.com.cn

and receptacle, and the Micro-AB receptacle to allowfor device-to-device connections. (The previous

Mini-A plug and Mini-AB receptacle have now been deprecated.)

USB Signaling

All USBdevices are connectedby afour wire USB cable. Thesefour lines areV
BUS

, GND and the twisted

pair: D+ and D-. USB uses differential signaling on the two data lines. There are four possible digital

line states that thebus canbe in: single-ended zero (SE0), single-ended one(SE1),J,andK.The

single-endedline statesare de□nedthe same regardlessofthespeed. However, the de□nitions of

theJandKline states change depending on thebus speed. Their de□nitions are described in Table 1. All

data is transmitted through the J and K line states. An SE1 condition should never be seen on the bus,

except for allowances during transitions

between the other line states.

Table1:Differential Signal Encodings

Single-ended zero (SE0) 0 0

Single-ended one (SE1) 1 1

Low-speed J 0 1

Low-speed K 1 0

High-/Full-speedJ

High-/Full-speedK

D+

1 0 D

0 1

The actual data on thebusis encoded through the line statesby a nonreturn-to-zero-inverted

(NRZI)digitalsignal.InNRZIencoding,adigital1is representedby nochangeinthelinestate anda digital0is

representedasa changeofthe line state. Thus,everytimea0istransmitted theline

statewillchangefromJtoK,orviceversa. However,ifa1isbeingsenttheline state will remain the same.

USB has no synchronizing clockline between the host anddevice. However, the receiver can

resynchronize wheneveravalidtransitionis seenonthebus. Thisis possibleprovided thata

transitionintheline stateisguaranteedwithina □ xedperiodoftimedeterminedbytheallowable clockskew

betweenthe receiverandtransmitter.To ensure thatatransitionis seenonthebus withinthe

requiredtime,USBemploysbit stuf □ ng. After6consecutive1sinadata stream(i.e. notransitions

ontheD+andD-linesfor6 clockperiods),a0is insertedtoforceatransition of the line states. This is

performed regardless of whether the next bit would have induced a transition or not. The receiver,

expecting the bit stuff, automatically removes the0from the data stream.

Bus Speed

Thebus speed determines therate at which bits are sent across thebus. There are currently three

speeds at which wired USB operates: low-speed (1.5 Mbps), full-speed (12 Mbps), and high-speed (480

Mbps). In order to determine the bus speed of a full-speed or low-speed

device,thehostmustsimplylookattheidle stateofthebus. Full-speeddeviceshaveapull-up resistor on the

D+ line, whereas low-speed devices have a pull-up resistor on the D-line. Therefore, if the D+ line is

high when idle, then full-speed connectivity is established. If the D-

www.pc17.com.cn

line is high when idle, then low-speed connectivity is in effect. A full-speed device does not

havetobecapableofrunningatlow-speed,andviceversa. Afull-speedhostorhub,however, must be

capable of communicating with both full-speed and low-speed devices.

Withthe introductionof high-speedUSB, high-speed hostsandhubsmustbeableto communi-cate with

devices of all speeds. Additionally, high-speed devices must be backward compatible for

communication at full-speed with legacy hosts and hubs. To facilitate this, all high-speed hosts and

devices initially operate at full-speed and a high-speed handshake must take place before a

high-speed capable device and a high-speed capable host can begin operating at high-speed. The

handshake begins when a high-speed capable host sees a full-speed device attached. Because

high-speeddevicesmust initially operateat full-speed when □rst connected, they must pull the D+ line

high to identify as a full-speed device. The host will then issue a reset on the bus and wait to see if the

device responds with a Chirp K, which identi□es the device as being high-speed capable. If the host

does not receiveaChirpK,it quits the high-speed handshake sequence and continues with normal

full-speed operation. However, if the host receives a ChirpK, it responds to the device with alternating

pairs of ChirpK’s and Chirp J’s to tell the device that the host is high-speed capable. Upon recognizing

these alternating pairs, the device switches to high-speed operation and disconnects its pull-up

resistor on the D+ line. The high-speed connection is now established and both the host and the

device begin communicating at high-speed. See the USB speci□cationfor more details on the

high-speed handshake.

To accommodate high-speed data-rates and avoid transceiver confusion, the signaling levels of

high-speed communication is much lower than that of full and low-speed devices. Full and

low-speeddevices operate witha logical highlevelof3.3V on theD+ andD-lines.For high-speed operation,

signaling levels on the D+ and D-lines are reduced to 400 mV. Because the high-speed signaling levels

are so low, full and low-speed transceivers are not capable of seeing high-speed traf□c.

To accommodate the high-speed signaling levels and speeds, both hosts and devices use ter-mination

resistors. In addition, during the high-speed handshake, the device must release its full-speed pull-up

resistor. But during the high-speed handshake, often times the host will acti-vate its termination

resistors before the device releases its full-speed pull-up resistor. In these

situationsthehostmaynotbeabletopulltheD+linebelowthe thresholdlevelofits high-speed receivers. This

may cause the host to seea spurious ChirpJ (dubbeda TinyJ) on the lines.

Thisisanartifactonthebusduetothevoltage dividereffect betweenthedevice’s1.5Kohm pull-up resistor

and the host’s45 ohm termination resistor. Hosts anddevicesmustbe robust againstthis situation.

Oncethedevicehasswitchedto high-speedoperationtheTinyJwillno longer be present, since the device

will have released its pull-up resistor.

Endpoints and Pipes

The endpoint is the fundamental unit of communication in USB. All data is transferred through virtual

pipes between the host and these endpoints. All communication betweena USB host and a USB device

is addressed to a speci□c endpoint on the device. Each device endpoint is a unidirectional receiver or

transmitter of data; either speci□ed as a sender or receiver of data from the host.

A pipe represents a data pathwaybetween the host and the device. A pipe may be unidirec-tional

(consisting of only one endpoint) or bidirectional (consisting of two endpoints in opposite

www.pc17.com.cn

directions).

Aspecial pipe is the Default Control Pipe. It consists of both the input and output endpoints 0. It is

required on all devices and must be available immediately after the device is powered. The host uses

this pipe to identify the device and its endpoints and to con□gure the device.

Endpoints are not all the same. Endpoints specify their bandwidth requirements and the way that

theytransfer data. There arefour transfer typesfor endpoints:

Control

Non-periodictransfers.Typically,usedfordevice con□guration, commands,and statusoperation.

Interrupt

This is a transaction that is guaranteed to occur within a certain time interval. The device will specify

the time interval at which the host should checkthe device to see if there is new data. Thisis

usedbyinputdevices such as mice andkeyboards.

Isochronous

Periodic and continuous transferfor time-sensitive data. There is no error checking or

retrans-mission of the data sent in these packets. This is usedfor devices that need to reserve

band-widthandhaveahigh toleranceto errors. Examples includemultimediadevicesfor audioand video.

Bulk

General transfer schemefor large amounts of data. This isfor contexts where it is more

im-portantthatthe dataistransmitted without errors thanforthe datato arriveina timely manner. Bulk

transfers have the lowest priority. If thebus isbusy with other transfers, this transaction maybe

delayed. The data is guaranteed to arrive without error. If an error is detected in the CRCs, the data

will be retransmitted. Examples of this type of transfer are □les from a mass storage device or the

output from a scanner.

USBPackets

All USB packets are prefacedby a SYNC □eld and thenaPacket Identi□er (PID)byte.Packets are

terminated with an End-of-Packet (EOP).

TheSYNC □ eld,whichisa sequenceofKJpairsfollowedby2K’sonthedatalines,servesas

aStartofPacket(SOP)markerandisusedto synchronizethedevice’stransceiverwiththatof the host. This

SYNC □eldis8bits longfor full/low-speed and32 bits longfor high speed.

The EOP □ eld varies depending on the bus speed. For low-or full-speed buses, the EOP

consistsofanSE0fortwobit times. For high-speedbuses, becausethebusisatSE0 when it is idle, a

different method is used to indicate the end of the packet. For high-speed, the transmitter induces a

bit stuff error to indicate the end of the packet. So if the line state before

theEOPisJ,thetransmitterwillsend 8-bitsofK.Theexceptiontothisisthe high-speedSOF EOP, in which

case the high-speed EOP is extended to 40-bits long. This is done for bus disconnect detection.

ThePIDisthe□rstbyteofvaliddatasent acrossthebus,andit encodesthepackettype.The

www.pc17.com.cn

PIDmaybefollowedbyanywherefrom0to1026bytes, dependingonthepackettype.ThePID byteis self-checking;in

orderforthePIDtobevalid,thelast4bitsmustbeaone’s complement ofthe □rst4bits.Ifa receivedPIDfailsitscheck,the

remainderofthepacketwillbe ignoredby the USB device.

There arefour typesof PID which are describedinTable 2.

Table2:USBPacketTypes

PID Type PID Name Description

Token OUT IN SOF SETUP Host to device transfer Device to Host transfer

Start of Frame marker Host to device control

transfer

Data DATA0 DATA1

DATA2 MDATA
Data packet Data packet High-Speed Data

packet Split/High-Speed Data packet

Handshake ACK NAK STALL

NYET
The data packet was received error free

Receiver cannot accept data or the transmitter

could not send data Endpoint halted or control

pipe request is not sup-ported No response yet

Special PRE ERR SPLIT

PING EXT
Preamble to full-speed hub for low-speed traf

□c Error handshake for Split Transaction

Preamble to high-speed hub for low/full-speed

traf□c High-speed □ow control token

Protocol extension token

Theformat of the IN, OUT, and SETUPToken packets is shown in □gure 4. Theformat of the SOFpacketisshownin □

gure 5. Theformatof the Data packetsis shownin □gure 6. Lastly, the formatof the Handshake packetsis

shownin Figure7.

Figure 4: TokenPacketFormat

DataTransactions

Datatransactions occurin three phases:Token, Data,and Handshake.

www.pc17.com.cn

Figure 5: Start-Of-Frame (SOF)PacketFormat

Figure 6: DataPacketFormat

Figure 7: HandshakePacketFormat

Figure 8: The Three PhasesofaUSBTransfer

All communication on the USBis host-directed. In theToken phase, the host will generatea Token packet which will

addressa speci□cdevice/endpoint combination. AToken packet can be IN, OUT, or SETUP.

www.pc17.com.cn

IN The host is requesting data from the addressed dev/ep.
OUT The host is sending data to the addressed dev/ep.
SETUP The host is transmitting control information to the device.

In the data phase, the transmitter will send one data packet. For INrequests, the device may senda NAKor

STALLpacket during the data phase to indicate that it isn’t able to service the token that it received.

Finally, in the Handshake phase the receiver can send an ACK, NAK, or STALLindicating the success orfailureof

thetransaction.

All of the transfers described above follow this general scheme with the exception of the Isochronous transfer. In

this case, no Handshake phase occurs because it is more impor-tantto streamdataoutinatimelyfashion. Itis

acceptabletodroppackets occasionallyand thereisno needtowaste timebyattemptingto retransmit

thoseparticularpackets.

PollingTransactions

It is possible that when a host requests data or sends data that the device will not be able to service the request.

This could occur if the device has no new information to provide the host or is perhapstoobusyto

send/receiveanydata.In thesesituationsthedevicewill NAKthe host. If the data transfer is a Control or Bulk transfer,

the host will retrythe transaction. However, if it is Isochronous or Interrupt transfer, it will not retrythe

transaction.

Ona fullorlow-speedbus,ifthetransactionis repeated,itis repeatedinits entirety. Thisis true regardless of the

direction of the data transfer. If the host is requesting information, it will continue to send INtokens until the

device sends data. Until then, the device responds with a NAK, leading to the multitude of IN+NAKpairs that are

commonly encountered onabus. This does not have much consequence as an INtoken is only3bytes and the NAKis

only1byte. However, if the host is transmitting data there is the potential for graver consequences. For

example,ifthehost attemptedtosend64bytesofdatatoadevice,butthedevice responded witha NAK, thehost will

retrythe entire data transaction. This requires sending the entire 64-byte data payload repeatedly until the device

responds with an ACK. This has the potential to waste a signi□cant amount of bandwidth. It isfor this reason that

high-speed hosts have an additionalfeature whenthedevice signalsthe inabilityto acceptany more data.

Whena high-speed host receivesa NAKafter transmitting data, instead of retransmitting the en-tiretransaction,it

simply sendsa3byte PINGtoken to poll the device and endpoint in question. (Alternatively, if the device responds to

the OUT+DATAwitha NYEThandshake, it means that the device acceptedthedatainthe

currenttransactionbutisnotreadyto accept additionaldata, and the host should PINGthe device before transmitting

more data.) The host will continue to PINGthe device until it responds with an ACK, which indicates to the host that it

is ready to receive information. At that point, the host will transmit a packet in its entirety.

HubTransactions

Hubsmakeit possibletoexpandthenumberof possibledevices that canbe attachedtoa single host. There are two

types of hubs that are commercially available for wired USB: full-speed hubsand high-speed hubs. Both typesof

hubshave mechanismsfor dealing withdownstream devices that are not of their speed.

Full-speed hubs can, at most, transmit at 12 Mbps. This means that all high-speed devices that

arepluggedintoafull-speedhubare automaticallydowngradedto full-speeddatarates.Onthe

www.pc17.com.cn

other hand, low-speed devices are not upgraded to full-speed data rates. In order to send data to low-speed

devices, the hub must actually pass slower moving data signals to those devices. The host (or high-speed hub) is

the one that generates these slower moving signals on the full-speedbus.

Ordinarilythelow-speedportsonthehubarequiet.Whenalow-speedpacket needstobe

sentdownstream,itisprefacedwitha PREPID. This opens up the low-speed ports. Note that the PREis sentat

full-speed datarates,butthefollowingtransactionistransmittedat low-speed data rates.

High-speed hubs only communicate at 480 Mbps with high-speed host. Theydo not downgrade the link between

the host and hub to slower speeds. However, high-speed hubs must still deal with slower devices being

downstream of them. High-speed hubs do not use the same mechanism as full-speed hubs. There would be a

tremendous cost on bandwidth to other high-speeddevicesonthebusiflow-speedor full-speed

signalingrateswereusedbetweenthehost and the hub of interest. Thus, in order to save bandwidth, high-speed

hosts do not send the PREtokento high-speed hubs,butrathera SPLITtoken. The SPLITtoken is similar to the PREin

thatit indicatestoa hub that thefollowingtransactionisfora slower speeddevice,however the datafollowing the

SPLITis transmitted to the hub at high-speed data rates and does not choke the high-speedbus.

Figure9:Split BulkTransactions When full/low-speed USB traf□c is sent through a high-speed USB hub, the transactions are
preceded by a SPLITtoken to allow the hub to asynchronously handle the full/low-speed traf□c withoutblocking other
high-speedtraf□cfromthe host. Inthisexample,bulkpacketsfora full-speeddevicearebeing sent through the high-speed hub.
Multiple CSPLIT+IN+NYETtransactions can occur on thebus until the high-speed hub is ready to return theDATAfrom the
downstream full/low-speed device.

Although all SPLITtransactionshavethesamePID,therearetwoover-archingtypesof SPLITs: Start SPLITs(SSPLIT)and

CompleteSPLITs(CSPLIT). SSPLITs are only used the □rst time that the host wishes to send a given transaction to

the device. Following that, it polls the hub for the device’s response with CSPLITs. The hub may respond manytimes

with NYETbefore supplying the host with the device’s response. Once this transaction is complete, it will begin the

next hub transaction with an SSPLIT. Figure 9illustratesanexampleofhubtransaction.

Start-of-FrameTransactions

Start-of-Frame(SOF)transactions are issued by the host at precisely timed intervals. These tokens do not cause

any device to respond, and can be usedby devicesfor timing reasons. The SOFprovides two pieces of timing

information. Because of the precisely timed intervals of SOFs, when a device detects an SOFit knows that the

interval time has passed. All SOFs also include a frame number. This is an 11-bit value that is incremented on every

new frame.

www.pc17.com.cn

SOFs are also used tokeep devices from going into suspend. Devices will go into suspend if theysee an idlebusfor

anextended periodoftime.By providing SOFs, the host is issuing traf□c on thebus andkeepingdevices from entering

their suspended state.

Full-speed hosts will send1 SOFevery millisecond. High-speed hosts divide the frame into8 microframes, and send

an SOFat each microframe (i.e., every125 microseconds). However, the high-speed hub will only increment the frame

number after an entire frame has passed. Therefore,a high-speed host will repeat the sameframenumber8times

before incrementing it.

Low-speed devices are never issued SOFsasitwould requiretoomuch bandwidthonan already slower-speed bus.

Instead, to keep low-speed devices from going into suspend, hosts will issueakeep-aliveeverymillisecond.

Thesekeep-alives are short SE0events on thebus that lastforapproximately1.33 microseconds.They

arenotinterpretedasvaliddata,andhaveno associated PID.

ExtendedTokenTransactions

The new LinkPower Management addendum to the USB 2.0 Speci□cation hasexpanded the number of PIDs

through the use of the previously reserved PID, 0xF0. The extended token format is a two phase transaction that

begins with a standard token packet that has the EXTPID.Following this packetis theextended token packet, which

takesa similarform. It begins with an 8-bit SubPID and ends with a 5-bit CRC, however the 11 remaining bits in the

middle will have different meaning depending on the type of SubPID.

Following this token phase, the device will respond with the appropriate data or handshake, depending

on the protocol associated with that SubPID. Currently, the only de□ned SubPID is for link power

management(LPM).For more details, please referto the LinkPower Management addendum.

Enumeration and Descriptors

When a device is plugged into a host PC, the device undergoes Enumeration. This means that the host

recognizes the presence of the device and assigns it a unique 7-bit device address. The host PC then

queries the devicefor its descriptors, which contains information about the speci□c device. There are

various types of descriptors as outlined below.

•

Device Descriptor: Each USB device can only have a single Device Descriptor. This descriptor

contains information that applies globally to the device, such as serial number,

www.pc17.com.cn

Figure11:USB Descriptors Hierarchyof descriptorsofaUSBdevice.Adevicehasa singleDevice descriptor. TheDevice descriptor
canhavemultiple Con□gurationdescriptors,butonlyasingleonecanbeactiveatatime.TheCon□g-uration descriptor can de□ne
one or more Interface descriptors. Each of the Interface descriptors can have oneor more alternate settings,butonly one
setting canbe activeata time. The Interface descriptor de□nes one or more Endpoints.

vendor ID, product ID, etc. The device descriptor also has information about the device class. The hostPC

can use thisinformationtohelp determine whatdriverto loadforthe device.

 Con□guration Descriptor: A device descriptor can have one or more con□guration de-scriptors. Eachof

these descriptors de□neshow thedeviceispowered(e.g.buspowered or self powered), the maximum power

consumption, and what interfaces are available in thisparticularsetup.Thehostcanchoose

whethertoreadjustthecon□gurationdescrip-tor or the entire hierarchy(con□guration, interfaces, and alternate

interfaces) at once.

 Interface Descriptor:Acon□guration descriptor de□nes one or more interface descriptors. Each

interfacenumber canbe subdivided intomultiple alternate interfaces thathelp more □nely modify the

characteristics of a device. The host PC selects particular alternate interface depending on what functions it

wishes to access. The interface also has class information which the host PC can use to determine what driver to

use.

 Endpoint Descriptor: An interface descriptor de□nes one or more endpoints. The end-point descriptor is

the last leaf in the con□guration hierarchyand it de□nes the bandwidth requirements, transfer type, and

transfer direction of an endpoint. For transfer direction, an endpoint is either a source (IN) or sink (OUT) of the

USB device.

 String Descriptor: Some of the con□guration descriptors mentioned above can include a

stringdescriptorindexnumber.ThehostPCcanthenrequestthe unicode encodedstring for a speci□ed index. This

provides the host with human readable information about the device, including stringsfor manufacturer name,

product name, and serialnumber.

www.pc17.com.cn

Device Class

USBdevicesvarygreatlyin termsof function and communication requirements. Somedevices are

single-purpose, such asa mouse orkeyboard. Otherdevices mayhavemultiple functional-ities that are

accessible via USB such as a printer/scanner/fax device.

The USB-IFDeviceWorking Group de□nesa discreetnumberofdevice classes. The ideawas to simplify

softwaredevelopmentbyspecifyinga minimum setof functionality and characteris-ticsthatis sharedby

agroupofdevicesandinterfaces.Devicesofthe sameclasscanalluse the same USB driver. Thisgreatly

simpli □ es the use of USB devices and saves the end-user thetimeand hassleof

installingadriverforeverysingleUSBdevicethatis connectedtotheir hostPC.

Forexample,inputdevicessuchasmice,keyboardsandjoysticks areallpartoftheHID (Human Interface

Device) class. Another example is the Mass Storage class which covers removable hard drives

andkeychain □ash disks. All of these devices use the same Mass Storage driver which simpli□es their

use.

However, a device does not necessarily need to belong to a speci□c device class. In these cases, the

USB device will require its own USB driver that the host PC must load to make the functionality

available to the host.

On-The-Go(OTG)

TheOTG supplementtotheUSB2.0specprovides methodsfor mobiledevicesto communicate

witheachother,activelyswitchtheroleofhostanddevice,andalsorequest sessionsfromeach other when

power to the USB is removed.

The initial role of host and device is determined entirelybythe USB connector itself. AllOTG capable

peripherals will have a 5-pin Micro-AB receptacle which can receive either the Micro-A or Micro-B

plug. If the peripheral receives the Micro-A plug, then it behaves as the host. If it receives the Micro-B

plug, then it behaves asthe device. However, there may be certain situations where a peripheral

received the Micro-B plug, but needs to behave as the host. Rather than request that the user swap

the cable orientation, the two peripherals have the ability to swap the roles of host and device through

the Host Negotiation Protocol (HNP).

The HNP begins when the A-device □nishes using thebus and stops allbus activity. The B-device

detects this and will release its pull-up resistor. When the A-device detects the SE0, it

respondsbyactivating its pull-up. Once the B-device detects this condition, the B-device issues reset

and begins standard USB communication as the host.

In order to conserve power, A-devices are allowed to stop providing power to the USB. However, there

couldbe situations wheretheB-devicewantstousethebusandV
BUS

isturnedoff.It is for this reason that

the OTG supplement describes a method for allowing the B-device to request a session from the

A-device. Upon successful completion of the Session Request Protocol (SRP),the A-device

willpowerthebusand continue standardUSBtransactions.

The SRP is broken up into two stages. From a disconnected state, the B-device must begin an SRP by

driving one of its data lines high for a suf□cient duration. This is called data-line pulsing. If the

A-device does not respond to this, the B-device will drive the V
BUS

above a speci□ed threshold and

release it, therebycompletingV
BUS

pulsing. If the A-device still does

www.pc17.com.cn

not begin a session, the B-device may start the SRP over again, provided the correct initial

conditions are met.

For more details onOTG, please see theOn-The-Go Supplement to the USB 2.0 Speci□cation.

References

•

USB Implementers’Forum

www.pc17.com.cn

1.2 I

2

CBackground

I
2

CHistory

When connecting multiple devices to a microcontroller, the address and data lines of each

devices were conventionally connected individually. This would take up precious pins on the

microcontroller, result in a lot of traces on the PCB, and require more components to connect

everything together. This made these systems expensive to produce and susceptible to

inter-ference and noise.

To solve this problem, Philips developed Inter-IC bus, or I
2

C, in the 1980s. I
2

C is a low-bandwidth,

short distance protocol for on board communications. All devices are connected through two

wires: serial data (SDA) and serial clock(SCL).

Because all commnication takes place on only two wires, all devices must have a unique ad-dressto

identifyitonthebus. Slavedeviceshavea prede□ned address,butthelower bitsof the address canbe

assignedto allowformultiplesofthe samedevicesonthebus.

I
2

CTheoryof Operation

I
2

Chas a master/slave protocol. The master initiates the communication. Here is a simpli□ed

descriptionofthe protocol.Forprecise details,pleaserefertothePhilipsI
2

Cspeci□cation.The

sequenceofevents are asfollows:

1 The master device issues a start condition. This condition informs all the slave devices to listen on the

serial data linefor their respective address.

2 The master device sends the address of the target slave device and a read/write □ag.

3 The slave device with the matching address responds with an acknowledgment signal.

4 Communication proceeds between the master and the slave on the databus. Both the master and slave

can receive or transmit data depending on whether the communication isareadorwrite.Thetransmitter

sends8bitsofdatatothe receiver, which replieswith a1bit acknowledgment.

5 When the communication is complete, the master issues a stop condition indicating that everything is

done.

www.pc17.com.cn

Figure13 showsa sample bitstreamof theI
2

Cprotocol.

I
2

CFeatures

I
2

C has many features other important features worth mentioning. It supports multiple data

speeds: standard (100 kbps),fast (400 kbps) and high speed (3.4 Mbps) communications.

Otherfeatures include:

 Built in collision detection,

 10-bit Addressing,

 Multi-master support,

 Data broadcast (general call).

For moreinformation about otherfeatures,seethereferencesattheendof this section.

I
2

CBene□ts and Drawbacks

Sinceonlytwo wires are required,I
2

Ciswell suitedfor boards with manydevices connected on thebus.

This helps reduce the cost and complexity of the circuit as additional devices are added to the

system.

Due to the presence of only two wires, there is additional complexity in handling the overhead of

addressing and acknowledgments. This can be inef□cient in simple con□gurations and a

direct-link interface such as SPI might be preferred.

I
2

CReferences

I
2

 Cbus – NXP (Philips) Semiconductors Of□cialI
2

Cwebsite

•

I
2

C(Inter-Integrated Circuit) BusTechnical Overview andFrequently Asked Questions–

•

Embedded Systems Academy

Introduction toI
2

C – Embedded.com

•

•

I
2

C – Open DirectoryProject Listing

www.pc17.com.cn

1.3 SPI Background

SPI History

SPI is a serial communication bus developed by Motorola. It is a full-duplex protocol which

functions on a master-slave paradigm that is ideally suited to data streaming applications.

SPI Theoryof Operation

SPI requiresfour signals: clock (SCLK), master output/slave input (MOSI), master input/slave

output (MISO), slave select (SS).

Three signals are shared by all devices on the SPI bus: SCLK, MOSI and MISO. SCLK is generatedbythe master

device and is usedfor synchronization. MOSI and MISO are the data lines. The direction of transfer is

indicatedbytheir names. Data is always transferred in both directions in SPI,but an SPI device interested in only

transmitting data can choose to ignore the receivebytes.Likewise,adeviceonly interestedinthe

incomingbytescantransmitdummy bytes.

Each device has its own SS line. The master pulls low on a slave’s SS line to select a device for communication.

Theexchange itselfhasno pre-de□ned protocol. Thismakesit idealfor data-streaming appli-cations. Data can be

transferred at high speed, often into the range of the tens of megahertz. The □ipside is that there is no

acknowledgment, no □ow control, and the master maynot even be aware of the slave’s presence.

www.pc17.com.cn

SPI Modes

Although there is no protocol, the master and slave need to agree about the data framefor the

exchange. The data frame is describedby two parameters: clock polarity (CPOL) and clock phase

(CPHA). Both parameters have two states which results infour possible combinations. These

combinations are shown in Figure 15.

SPI Bene□ts and Drawbacks

SPI is a very simple communication protocol. It does not have a speci□c high-level protocol which

means that there is almost no overhead. Data can be shifted at very high rates in full duplex. This

makes it verysimple and ef□cient in a single master single slave scenario.

Because each slave needs its own SS, the number of traces required is n+3, where nis the number

of SPI devices. This means increased board complexity when the number of slaves is increased.

SPI References

 Introduction to SerialPeripheral Interface – Embedded.com

 SPI – SerialPeripheral Interface

www.pc17.com.cn

1.4 MDIO Background

MDIO History

Management Data Input/Output,or MDIO,isa 2-wire serialbus thatis usedto manage PHYsor

physical layer devices in media access controllers (MACs) in Gigabit Ethernet equipment. The

management of these PHYs is based on the access and modi□cation of their various

registers.

MDIO was originally de□ned in Clause 22 of IEEE RFC802.3. In the original speci□cation, a

single MDIO interface is able to access up to 32 registers in32different PHY devices. These

registers provide status and control information such as: link status, speed ability and

selec-tion, power downfor low power consumption, duplex mode (full or half),

auto-negotiation,fault signaling, and loopback.

To meet the needs the expanding needs of 10-Gigabit Ethernet devices, Clause 45 of the

802.3ae speci□cation provided thefollowing additions to MDIO:

 Ability to access 65,536 registers in 32 different devices on 32 different ports

 Additional OP-code and ST-codefor Indirect Address register accessfor 10 Gigabit Eth-ernet

 End-to-endfault signaling

 Multiple loopbackpoints

 Low voltage electrical speci□cation

MDIO Theoryof Operation

The MDIO bus has two signals: Management Data Clock (MDC) and Managment Data

In-put/Ouput (MDIO).

MDIO has speci□c terminology to de□ne the various devices on the bus. The device driving the

MDIObusis identi□ed as the Station Management Entity(STA). The targetdevices that are

being managedbytheMDC arereferredtoas MDIO ManageableDevices (MMD).

The STAinitiates all communication in MDIO and is responsiblefor driving the clock on MDC.

MDC is speci□ed to have a frequency of up to 2.5 MHz.

Clause22

Clause22 de□nes the MDIO communication basicframeformat (Figure 16)whichis composed of

thefollowing elements:

Theframeformatonlyallowsa5-bitnumberforboththePHY addressandtheregister address,

which limits the number of MMDs that the STAcan interface. Additionally, Clause 22 MDIO only

supports 5V tolerant devices and does not have a low voltage option.

www.pc17.com.cn

Figure16:Basic MDIOFrameFormatTable3:Clause 22format

ST 2bits Start of Frame (01 for Clause 22)

OP 2bits OP Code

PHYADR 5bits PHY Address

REGADR 5bits Register Address

TA 2bits Turnaround time to change bus ownership from STAto MMD

if required

DATA 16 bits Data Driven bySTAduring write Driven byMMD during read

Clause45

In order to address the de□ciencies of Clause 22, Clause 45 was added to the 802.3 speci□ca-tion.

Clause45 added supportforlowvoltagedevicesdownto 1.2Vandextendedtheframe format

(Figure17)to provide access to manymore devices and registers. Some of the elements of the

extended frame are similar to the basic data frame:

The primary change in Clause 45 is how the registers are accessed. In Clauses 22, a sin-gle frame speci□ed both

the address and the data to read or write. Clause 45 changes this paradigm. First an address frame is sent to

specify the MMD and register. Asecond frame is then sent to perform the read or write.

The bene□ts of adding this two cycle access are that Clause 45 is backwards compatible with Clause22,

allowingdevicesto interoperate with each other. Secondly,bycreatinga address frame, the register address space

is increased from5 bits to 16 bits, which allows an STA to

www.pc17.com.cn

Table4:Clause 45format

ST 2bits Start of Frame (00 for Clause 45)

OP 2bits OP Code

PHYADR 5bits PHY Address

DEVTYPE 5bits Device Type

TA 2bits Turnaround time to change bus ownership from STAto MMD

if required

ADDR/DATA 16 bits Address or Data Driven bySTAfor address Driven

bySTAduring write Driven byMMD during read Driven byMMD

during read-increment-address

access 65,536 different registers.

In orderto accomplishthis, several changesweremadeinthe compositionofthedataframe.A new ST

code (00) is de□ned to identify Clause 45 data frames. The OP codes were expanded to specify an

addressframe,a writeframe,a readframe, ora read and post read increment address frame. Since

the register address is no longer needed, this □eld is replaced with DEVTYPE to specify the

targeted device type. The expanded device type allows the STA to access other devices in addition

to PHYs.

Additional details about Clause45 canbefound on the IEEE 802.3workgroupwebsite.

MDIO References

 IEEE 802 LAN/MAN Standards Committee

 Use The MDIO BusTo Interrogate ComplexDevices – Electronic Design Magazine

www.pc17.com.cn

2 Hardware Speci□cations

2.1 Beagle USB 480 Protocol Analyzer

Connector Speci□cation

On one side of the Beagle USB 480 monitor is a single USB-B receptacle. This is the Analysis

side (Figure 18). This port connects to the analysis computer that is running the Beagle Data

Center software or custom application. Furthermore, the Beagle USB 480 analyzer Analysis

side must be plugged in at anytime a target device is plugged in. This is to ensure that all

connections are properly powered.

The opposite side is the Capture side (Figure 19), and it contains a USB-A and USB-B recep-tacle. These are used

to connect the target host computer to the target device. The target host computer can be the same computer

as the analysis computer, although it maynot be optimal under certain conditions.

The Capture side acts as a USB pass-through. In order to remain within the USB 2.0 speci□-cations, no more

than5 meters of USB cable should be used in total between the target host

www.pc17.com.cn

computer and the target device.

The Capture side also includes a mini-DIN9 connector which serves asa connection to the digital inputs and

outputs. Its pin outs are described in Figure 20 and the cable coloringfor the included cable are describedinTable 5.

Table5:Digital I/O Cable Pin Assignments

Pin Name

Color

Input1

Brown

Input2

Red

Input3

Orange

Input4

Yellow

Output1

Green

Output2

Blue

Output3

Purple

Output4

Grey

Ground

Black

Pin Number

Pin1 Pin2 Pin3 Pin4

Pin5 Pin6 Pin7 Pin8

Pin9

The top of the Beagle USB 480 Protocol Analyzer has three LED indicators as shown in Figure21. Thegreen LED

serves as an AnalysisPort connection indicator. Thegreen LED willbe illuminated when the Beagle analyzer has

been correctly connected to the analysis computer andis

receivingpowerfromUSB.TheamberLEDservesasaTargetHostconnection indicator. The amber LED will be

illuminated when the target host computer is connected to the analyzer. Finally,theredLEDisan

activityLED.Itsblinkrateis proportionaltothe amountofdatabeing sent across the monitored bus. If no data is seen

on the bus, but the capture is active, the activity LED will simply remain on.

Pleasecheckallthe connectionsifthegreenortheamberLEDfailto illuminateaftertheBeagle USB 480 analyzer has

been connected to the analysis computer and the target host computer.

www.pc17.com.cn

Digital I/O

Digital inputs allow users to synchronize external logic with the analyzed USB data stream.

Whenever the state of an enabled digital input changes, an event will be sent to the analysis

PC.The digitalinputmaynot oscillateataratefasterthan30MHz.Anyfasterandtheevents may not be

passed to the PC. Also, when an active data packet is on thebus, only one input event will be

recorded and sent back to the analysis PC. Once the packet has completed, the latest

stateofthelines(if changed)willbesentbacktothePC.Digitalinputsareratedfor3.3V.

Digital outputs allow users to output events to external devices, such as an oscilloscope or logic

analyzer, especially to trigger the oscilloscope to capture data. Digital outputs can be set to

activate on various conditions that are described more thoroughly in Section 3.3. The digital

outputs areratedto3.3Vand10mA.

On-boardBuffer

TheBeagleUSB480analyzer containsa64MB on-boardbuffer. Thisbufferservestwopur-poses. It

helps buffer large data □ ows during real-time capture when the analysis computer

cannotstreamthedataofftheBeagleanalyzerfast enough.Itisalsousedduringadelayed-download

capture to store all of the captured data.

Hardware Filters

The Beagle USB 480 analyzer provides six different hardware □lters. These will □lter out

data-less transactions in the hardware, such as IN+NAKand PING+NAKcombinations. The unwanted

dataisthrownaway, reducingthe amountof captureddataonthedevice,the amountof analysis traf□

cbacktothe analysisPC,andthe processingoverheadonthe analysisPC.Amore detailed overview of

the hardware □lters is available in Section 3.3.

www.pc17.com.cn

Signal Speci□cations/Power Consumption

Speed

The Beagle USB 480 Protocol Analyzer supports capture of all wired USB speeds. The analyzer

has automatic speed detection as well as manual speed locking.

ESDProtection

The Beagle analyzer has built-in electrostatic discharge protection to prevent damage to the

unit from high voltage static electricity.

Power consumption

When the Beagle analyzer is connected, it consumes a maximum of approximately 2.5 mA from

the capture host. This is a minimal overhead in addition to the current draw of the target

device. Note that if a capture target reports itself as a 100 mA device and draws almost all of

that current, the Beagle analyzer’s extra power consumption may cause the overall power

consumption to be out of spec.

The Beagle analyzer consumes a maximum of approximately 180 mA.

2.2 Beagle USB 12 Protocol Analyzer

Connector Speci□cation

On one side of the Beagle USB 12 monitor is a single USB-B receptacle. This is the Analysis

side (Figure 22). This port connects to the analysis computer that is running the Beagle Data

Center software.

On the opposite side is the Capture side (Figure 23), are a USB-A and USB-B receptacle. These are used to

connect the target host computer to the target device. The target host computer can be the same computer as

the analysis computer.

www.pc17.com.cn

The Capture side acts as a USB pass-through. In order to remain within the USB 2.0 speci□-cations, no more

than5 meters of USB cable should be used in total between the target host computer and the target device. The

Beagle USB 12 monitor is galvanically isolated from the USBbus to ensure the signal integrity.

Please note, that on the Capture side, there is a small gap between the two receptacles. In thisgap,twoLED

indicators are visible, agreen oneandan amber one, asshownin Figure 24. When the Beagle USB 12 monitor has been

correctly connected to the analysis computer, the green LED will illuminate. When the Beagle USB 12 monitor is

correctly connected to the target host computer, the amber LED will illuminate.

Pleasecheckallthe connectionsiftheoneorbothLEDsfailto illuminateaftertheBeagleUSB 12 monitor has been

connected to the analysis computer or the target host computer.

www.pc17.com.cn

Signal Speci□cations/Power Consumption

Speed

The Beagle USB 12 Protocol Analyzer supports full-and low-speed capture. It does not

support high-speed protocolsfor capture.Theuplinktothe analysisPCmustbe high-speed.

ESDprotection

The Beagle analyzer has built-in electrostatic discharge protection to prevent damage to the

unit from high voltage static electricity.

Power consumption

The Beagle analyzer consumes a maximum of approximately 15 mA from the capture host.

This is a minimal overhead in addition to the current draw of the target device. Note that if a

capture target reports itself as a 100 mA device and draws almost all of that current, the

Beagle analyzer’sextrapower consumptionwill causetheoverallpower

consumptiontobeoutofspec.

Furthermore, the Beagle analyzer consumes a maximum of approximately 125 mA of power

from the analysis PC. However, it reports itself to the analysis PC as a low-power device. This

reportingallowstheBeagleanalyzertobeusedwhenits analysisportis connectedtoabus-powered

hub (which are only technically speci□ed to supply 100 mA per port). Normally this extra

amount of power consumption should not cause any serious problems since other ports

onthehubaremostlikelynotusingtheirfull100mAbudget.Ifthereareanyconcerns regarding the

total amount of available current supply, it is advisable to plug the Beagle analyzer’s directly

into the analysis PC’s USB host port or to use a self-powered hub.

2.3 BeagleI
2

C/SPI/MDIOProtocol Analyzer

Connector Speci□cation

The ribbon cable connector is a standard 0.100” (2.54mm) pitch IDC type connector. This

connector will mate witha standardkeyedboxed header.

Alternatively, split cables are available which connects to the ribbon cable and provides

individ-ual leadsfor each pin with or withoutgrabber clips.

Orientation

The ribbon cable pin order follows the standard convention. The red line indicates the □rst

position. When lookingatyour Beagle analyzerintheupright position (□gure 25),pin1isinthe top

left corner and pin 10 is in the bottom right corner.

Ifyou□ipyourBeagleanalyzerover(□gure 26)suchthatthetextontheserialnumber labelis inthe

properupright position,thepin orderisasshowninthefollowingdiagram.

Order of Leads

1. SCL

www.pc17.com.cn

1 GND

2 SDA

3 NC/+5V

4 MISO

5 NC/+5V

6 SCLK/MDC

7 MOSI/MDIO

8 SS

9 GND

Ground

GND (Pin 2):GND (Pin 10):

It is imperative that the Beagle analyzer’sground lead is connected to theground of the target system.

Withouta common ground betweenthetwo,the signaling willbe unpredictableand communication

willlikelybe corrupted.Twogroundpins areprovidedto ensureasecureground path.

I
2

CPins

SCL (Pin 1):

Serial Clockline – the signal used to synchronize communication between the master and the slave.

SDA(Pin 3):

www.pc17.com.cn

Serial Data line – the bidirectional signal used to transfer data between the transmitter and the

receiver.

SPI Pins

SCLK (Pin 7):

Serial Clock – control line thatisdrivenbythe master and regulates the □owof the data bits.

MOSI (Pin 8):

Master Out Slave In – this data line supplies output data from the master which is shifted into the

slave.

MISO (Pin 5):

Master In Slave Out – this data line supplies the output data from the slave to the input of the

master.

SS (Pin 9):

Slave Select – control line that allows slaves to be turned on and off via hardware control.

MDIO Pins

MDC (Pin 7):

Management Data Clock – control line that is drivenbythe STAand synchronizes the □ow of the

data on the MDIO line.

MDIO (Pin 8):

Management Data Input/Output – the bidirectional signal used to transfer data between the STA

and the MMD.

PoweringDownstreamDevices

Itis possibletopoweradownstream target, suchasanI
2

CorSPI EEPROM withthe Beagle

analyzer’spower(whichisprovidedbythe analysisPC’sUSBport).Itisidealifthedownstream device does

not consume more than 20–30 mA. The Beagle analyzer is compatible with USB hubs as well as

USB host controllers. Bus-powered USB hubs are technically only rated to provide 100 mA per USB

device. If the Beagle analyzer is directly plugged into a USB host controller or a self-powered USB

hub, it can theoretically draw up to 500 mA total, leaving approximately375mAforanydownstream

target.However,theBeagleanalyzeralwaysreports itself to the host as a low-power device.

Therefore, drawing large amounts of current from the host is not advisable.

Signal Speci□cations/Power Consumption

Speed

The Beagle I
2

C/SPI/MDIO is capable of monitoring I
2

C bus bit rates of up to 4 MHz, SPI bit

ratesofupto24MHz,andMDIObitratesofupto2.5MHz. BothI
2

CandMDIO monitoring

www.pc17.com.cn

can sustain their respective maximum speeds, however SPI monitoring at the maximum bit

rate maynotbepossiblefor sustainedtraf □ c.Theexact limitationsofSPI monitoringare

dependent on the targetbus conditions and the CPUof the hostPC.Forexample,

theworst-case situation isa sustained sequenceof shortSPIpacketsatthe

maximumbusbitrateof24 MHz.

Itisimportanttonotethatinordertoproperly captureI
2

C,SPI,orMDIOsignals,the sampling

ratemustbeset properly.ForSPIorMDIO monitoring,the minimum requirementforthe

sam-plingrateis twice thebus bitrate.ForI
2

Cmonitoring, the samplingrate shouldbe 5–10 times

thebusbitrate.Forfurther detailson thisreferto Section 3.3.

Logic High Levels

All signallevels shouldbe nominally 3.3V(+/-10%) logic high. This allows the Beagle analyzer tobe

used with bothTTL(5V)and CMOSlogiclevel(3.3V)devices.Alogichighof3.3Vwill be adequate for

TTL-compliant devices since such devices are ordinarily speci□ed to accept logic high inputs

above approximately3V.

ESDprotection

The Beagle analyzer has built-in electrostatic discharge protection to prevent damage to the

unit from high voltage static electricity. This adds a small amount of parasitic capacitance

(approximately 15 pF) to the signal path under analysis.

Power Consumption

The Beagle analyzer consumes approximately 125 mA of power from the analysis PC. However,

it reports itself to the analysis PC as a low-power device. This reporting allows the Beagle

analyzer to be used when its analysis port is connected to a bus-powered hub (which are only

technically speci□ed to supply 100 mA per port). Normally this extra amount of power

consumption should not cause any serious problems since other ports on the hub are most

likely not using their full 100 mAbudget. If there are any concerns regarding the total amount

of available current supply, it is advisable to plug the Beagle analyzer’s directly into the

analysis PC’s USB host port or to use a self-powered hub.

2.4 USB 2.0

All Beagle analyzers are high-speed USB 2.0 devices. Theyrequire a high-speed USB 2.0 host

controllerfor the analysis data connection.

2.5 Temperature Speci□cations

The Beagle analyzers are designed to be operated at room temperature (10–35°C). The

elec-tronic components are rated for standard commercial speci□cations (0–70°C). However,

the plastic housing, along with the ribbon and USB cables, maynot withstand the higher end of

this range. Any use of the Beagle analyzer outside the room temperature speci□cation will

void the hardwarewarranty.

www.pc17.com.cn

3 Device Operation

3.1 Electrical Connections

Beagle USB Protocol Analyzers

The Beagle USB analyzer’s analysis port must be connected to the analysis computer through

a USB cable. The Capture side of the Beagle analyzer must be placed on the USB to be

monitored. Normally, this is accomplishedbyplacing the Beagle analyzer in-line between the

USBdeviceandhostbeing monitored. In otherwords,thebustobe monitoredgoes through the

Beagle USB analyzer. To properly accomplish this connection, connect the target host to the

USB-B receptacle on the Capture side of the Beagle USB analyzer, and connect the target

device to the USB-A receptacle on the Capture side of the Beagle USB analyzer. See Section

2.1for more details. Thisis the setup illustratedin panels a–cof Figure27.

Insome cases,thetargetbusisfullyinternaltoan embeddedsystem.Ifso,itissimply neces-saryto

tap off the lines through the use of a parallel connector. One can plug in the tapped off cable

into either theTarget host orTargetdevice portof the analyzer;both are equivalent. This is

illustrated in Figure 27d.

The connections of the Beagle USB analyzer are complicated somewhatby thefact that the Beagle analyzer is

monitoring USB signals and then communicating the monitored data back though another USB port. Thus, the

issue of the host broadcasting, as described in Section 1.1, comes intoplay. Whileall Beagle analyzers use

high-speedUSB communicationrate, this issue is only pertinent when using the Beagle USB 480 Protocol Analyzer

to monitora high-speed device. If the Beagle USB 480 Protocol Analyzer’s analysis port is connected to the same

host controller as a high-speed device that it is monitoring (Figure 27a) then the Beagle analyzer will

www.pc17.com.cn

endup snif□ng someofitsowntraf□c. Thisis especiallytrueifthe Beagle analyzeris con□gured to

stream back bus traf□c to the PC in real time! This will be seen in the capture as many INpackets

to the Beagle analyzer’s device address with occasional downstream handshake packets.

This phenomenon has two negative consequences. Theextra traf□c on the capturebus from the

Beagle USB 480 analyzer maymake it dif□cultto locate the USB traf□c of interest within the

volume of data captured. Additionally, thebus traf□cfor Beagle USB 480 analyzer will reduce the

bandwidthavailableto otherUSBdevicesonthebus.

There are a number of ways to deal with this issue.

One methodfordealingwiththisproblemis install anotherUSBhost controllertothe computer and

connect one host controller to the analysis port of the Beagle analyzer and use the other host

controller to communicate with the host and device under test (Figure 27b). Downstream USB

packets are only broadcast on USB links on the same host controller, so this technique is another

way to ensure that the Beagle analyzer’s traf□c is not seen on the capture side of the analyzer.

The disadvantageis that thePCmust spend processing timefor communicating both with the

target device as well as the Beagle analyzer.

The preferred method is to connect separate computers to the analysis port and to the target

host port of the Beagle USB 480 analyzer (Figure 27c). This puts the analysis end of the

Beagleanalyzeronadifferentbus, ensuringthatitstraf□cisnot seenonthe capturesideofthe analyzer.

Furthermore, the analysis PC can have full resources to process the incoming data, and the

testPC will notbe encumberedbythe analysis software.

Note: All of the USB ports on most computers are on a single host controller, so connecting to a

different USB port is not suf□cient. Installing a PCI, PCI Express, or PC Card USB controller card

will ensure there is a second USB host controller on the computer.

If the user is constrained to the scenario illustrated in Figure 27a, there are twofeatures of the

Beagle analyzer to help mitigate the dilemmas previously outlined. One is a hardware □ltering

optionthatrunsontheBeagleanalyzerto □ lterpackets directedtotheBeagleanalyzer’sdevice

address. These packets will be □ltered out from the capturebythe hardware, so it will not be sent

backthrough the analysis port. This option does not entirely remove the Beagle analyzer’s traf□c

from the monitored bus, but it will de□nitely minimize the analyzer’s effect on the bus since the

INand ACKtokens sent to the analyzer will not again appear in the analysis traf□c. In situations

where the maximum bandwidthis requiredby the targetdevice,avoid using this option.The

secondfeatureisthe abilitytoperformadelayed-downloadcapture.Inthis capture mode, the capture

data is not streamed out of the analysis port of the Beagle analyzer until after the analyzer has

stopped monitoring thebus. Thisgreatly reduces the amount of USB traf□c going to the Beagle

USB 480 analyzer while the capture is active. Thesefeatures are mentioned later in this section

where appropriate.

BeagleI
2

C/SPI/MDIOProtocol Analyzer

The BeagleI
2

C/SPI/MDIO analyzer usesa standardUSBcableto connectthe protocol analyzer to the

analysis computer. The data line(s), clock, andground of the communication protocol in

questionmustbe properly connectedtotheBeagleanalyzer’sdata line(s),clock,andground,

respectively.

www.pc17.com.cn

3.2 Software Operational Overview

There area seriesof steps requiredfora successful capture. These steps are handledbythe

Beagle Data Center software automatically, but must be explicitly followed by an application

programmer wishing to write custom software. The application programmer interface (API) is

documentedextensivelyin Section 6,butthefollowingis meanttoprovidea high-leveloverview of

the operation of the Beagle analyzers.

1 Determine the port number of the Beagle analyzer. The function bg_find_devices()returnsa listofport

numbersforall Beagle analyzers that are attachedtothe analysis computer.

2 Obtaina Beagle handlebycalling bg_open()on the appropriate port number. All other software operations

are based on this Beagle handle.

3 Con□gure the Beagle analyzer as necessary. The API documentation provides complete details about the

different con□gurations.

4 Start the capturebycalling the bg_enable()function.

5 Retrievemonitoreddatabyusingtheread functionsthatare appropriateforthe monitored bus type. There

are different functions available for retrieving additional data such as byte-and bit-level timing.

6 End the capture by calling the bg_disable()function. At this point the capture is stopped, and no new data

can be obtained.

7 Close the Beagle handle with the bg_close()function.

If the Beagle analyzer is disabled and then re-enabled it does not need to be re-con□gured.

However, upon closing the handle, all con□guration settings will be lost.

Example codeisavailablefordownload from theTotal Phasewebsite. Theseexamples

demon-stratehowtoperformthe steps outlineabovefor eachofthe serialbus protocols

supported.

3.3 Beagle USB 480 Protocol Analyzer Speci□cs

Asidefrom standardreal-time capture,theBeagleUSB480analyzerprovidesanumberofother

features. These features include bus event monitoring, digital inputs and outputs, hardware

□ltering, as well as multiple capture modes.

Bus Events

The Beagle USB 480 analyzer provides users with insight into events that occur on the bus.

Thesebusevents include suspend, resume, reset, speed changes (including high-speed

hand-shake), and connect/disconnect events. Furthermore, events that are unexpected (i.e.,

don’t conform to the USB spec) are tagged with a speci□c status code to bring that to the

attention of the user. The Beagle USB 480 analyzer also has the ability to identify imperfect

resets, like aTinyJassociated withthe high-speed handshake.ATinyJ(orK)mayalsobe tagged

when notina high-speedhandshake situationif the resetis not fullyat an SE0,butis instead □

oating

www.pc17.com.cn

above the high-speed receiver threshold. This allows users to see if the host is driving a reset

signal that is close enough toground voltage. Alternatively, if this amount of detail on reset signals

is not desired, the auto speed-detection could be disabled, and locked to the speci□c speedof

interest. For more details onUSBbuseventsreferto Section 1.1andtheUSB2.0 spec.

OTG Events

The Beagle USB 480 analyzer has the ability to detect On-The-Go (OTG) events. These events

include the Host Negotiation Protocol (HNP) and each stage of the Session Request Protocol

(SRP).For more details on these protocols, see Section 1.1.

A HNP event will be returned upon seeing the correct initial conditions, and then detecting a

correctly timed SE0followedbythe full-speedJ.If the new host does not issuea reset within the

speci□ed time, the HNP event will be returned with an error indication.

There are two stages of the SRP, and a separate event is returned for each of them. Upon

detecting a data-line pulse, the Beagle software will return an event corresponding to this

con-dition. After detectinga data-line pulse, the software will reportaV
BUS

pulseifitis seen on the

bus. Note that this means that anyV
BUS

pulse that occurs withouta preceding data-line pulse

willnotbereportedsinceitis completelyoutoftheOTG speci □ cation.IftheSRPis successful, it

willbefollowedby a host connectevent.Ifitis unsuccessful, thenit willbefollowedby a host

disconnectevent.

Digital Inputs

Digital inputs providea meansfor users to insert events into the data stream. There arefour digital

inputs that can be enabled individually. Whenever an enabled input changes state it will

issueaneventandbetaggedwitha timestampofwhentheinputwasinterpretedbytheBeagle USB 480

analyzer. Digital inputs can not exceed a rate of 30 MHz. Digital inputs that occur

fasterthanthatarenotguaranteedtobeinterpreted correctlybytheBeagleanalyzer.Also,only one

digital input event may occur per active packet. All other digital input events can only be handled

after the packet has completed. Digital inputs, although guaranteed to have the correct

timestamp given the previous conditions, have the possibility of being presented out of order

becausethey areprovidedrandomlybythe userandhaveno direct correlationtothebus.

It is important to note that the digital inputs are susceptible to cross-talk if they are not being

activelydriven. Asituation like this could occurifa digital input has been enabled,but has not been

tied to a signal. Anyother nearbysignal (i.e., other digital inputs or outputs) could cause the input to

activate. It is recommended that all undriven digital inputs be disabled or tied to ground.

For hardware speci□cations of the digital inputs refer to Section2.1.

Digital Outputs

Digital outputs provide a means for users to output certain events to other devices, such as

oscilloscopes.Inthisway, userscan synchronizeeventsonthebuswithothersignalsthey may be

measuring.

www.pc17.com.cn

Digital outputs, like digital inputs, are susceptible to cross-talk if left disabled. It is recommended

that users do not attempt to use disabled digital outputs on other devices,as their characteristics

are not speci□ed. Either disconnect all connections to disabled digital outputs, or tie those

outputs toground.

There arefour digital outputs that are user con□gurable. Each digital output has the option of

being enabled, active high, or active low. Furthermore, each output can activate on speci□c

conditions described below.

 Digital Output1 will be asserted whenever the capture is running.

 Digital Output2 willbe asserted whenevera packetis detected on thebus.

 Digital Output3 will be asserted when the selected PID, device address, and endpoint match.

 Digital Output4 will be asserted when the selected PID, device address, endpoint, and data pattern match.

The digital outputs activate as soon as their triggering event can be fully con□rmed. Thus,

Pins1and2will activate as soon as the capture activates or rxactive goes high, respectively.

However, Pins3and4 must assurea matchofallof their characteristics. Therefore,only once all

possible PIDs, device address, and endpoints of a given packet are checked completely can the

output activate. The assertionof matched dataonPin4 mustwait untiltheendofthe data packetto

assurea match.Packetsthatareshorterthenwhatis de □ nedbythe userto match

willactivatePin4ifallthedatauptothatpoint matched correctly.

Hardware speci□cationsfor the digital outputs are providedin Section 2.1.

Hardware Filtering

Hardware □lters provide users with the ability to suppress data-less transactions, like those

described in Section 1.1. When possible, the hardware □lters will discard all packetsthat meet the

□ltering criteria. These □lters can save a signi□cant amount of capture memorywhen used, and

are highly recommended when capture-memorycapacity is a concern.

Another bene□t of the hardware □lters is that they reduce the amount of traf□c between the

analysis computer and the Beagle analyzer. This is especially usefulfor situations where the

analysis computer hasa hard timekeepingup with the bandwidth requirementsof the Beagle

analyzer.Forexample, the analysis computer mayberunning other applications orit mayhave

otherdevices attachedtothe samebus.

There are six different hardware □lters that can be used independently or in conjunction with

one another. They must simplybe enabledbythe user. Their functionalityis describedbelow.

 SOF Filtering will remove all Start-of-Frame(SOF)tokens from the data stream. Please note that enabling

the SOF□lter willforfeit the ability to detect suspend and high-speed disconnects conditions on thebus.

 IN Filtering will attempt to remove all IN+ACKand IN+NAKpairs.

www.pc17.com.cn

 PING Filtering will attempt to remove all PING+NAKpairs.

 PRE Filtering will remove all PREtokens.

•

SPLIT Filtering will attempt to remove many of the data-less SPLITtransactions. This

 □lter will attempt to discard: -SSPLIT+IN(for isochronous and interrupt transfers)

-SSPLIT+IN+ACK(forbulk and control transfers)

-CSPLIT+OUT+NYET-CSPLIT+SETUP+NYET-CSPLIT+IN+NAK-CSPLIT+IN+NYET

 Self Filtering will remove all packets intendedfor devices with the same device address as the Beagle

analyzer. Due to the architecture of USB, when the Beagle analyzer is snif□ngthe same high-speedbuson

whichitis connected,it will seeitsowntraf□con the Capture side (for more details refer to Section 1.1). This □lter

gives the user the opportunity to remove that traf□c out of the reported data stream. This □lter, however, is

only effective if the Beagle USB 480 analyzer is infact connected to the samebus as it is analyzing. If the Beagle

analyzer is connected to a different host controller, this □lter should be disabled, as there is a probability that

another device on the Target bus will match the Beagle analyzer’s device address, and data to that device will be

lost.

Filters and Digital I/O

There are a couple of issues regarding the hardware □ltering and digital I/O that are worth

noting. Digital outputs are computed before any □ltering takes place. This means that if an

output is set to activate on a normally □ltered packet, the output will still activate even if the

packetisnever seenbythe user.Forexample,if SOF□ltering is enabled, digitaloutputs set to activate

upon seeing an SOFPID will still activate when an SOFis on thebus.

Digital inputs can potentially invalidate a □lter. The □lters that are susceptible to this are the IN,

PING, and SPLIT□lters. These □lters suppress entire transactions based on the sequence of

packets on thebus. If an input trigger occurs at any time during this sequence, the entire

transaction is sent to the user. As an example of this, if IN+NAKpair □ltering is enabled and a

digital input event occurs at anytime between the start of the INtoken and the veryend of the

NAKhandshake, the entire transaction will be reported to the user. However, if no digital input event

occurs, the IN+NAKpair will be discarded.

Capture Modes

The Beagle USB 480 Protocol Analyzer provides the user with3different capture modes: real-time

capture, real-time capture with over□ow protection, and delayed-download.

Real-time Capture

Real-time capture is the default capture mode. It provides the user with real-time status of the

bus being monitored. The real-time capture canbe stoppedbythree methods. The □rst method

isbyhaving the user end the capture througha bg_disable()call (or though the Beagle Data

www.pc17.com.cn

Center software). The second method is if the Beagle analyzer loses power. This is not the

recommended methodfor stoppinga capture. Finally, the capture willbe automatically stopped bythe

Beagle USB 480 analyzer if the 64 MB hardwarebuffer □lls to capacity. In this situation, the Beagle

analyzer will no longer capture new data from the monitoredbus. Instead, calls to bg_usb480_read()will

only retrieve whatever data is remaining in thebuffer. The last call of bg_usb480_read()will return a

BG_READ_USB_END_OF_CAPTUREindicating that the capture has stopped and that there is no new data. The

hardwarebuffer may □ll in conditions where the analysis computeris not reading the data from the

Beagle analyzer asfast asitis capturing new data.

Real-time Capture with Over□ow Protection

Real-time Capture with Over□ow Protection is essentially identical to real-time capture except that

it allows for more ef□cient use of the hardware buffer when it nears full capacity. When the buffer is

near capacity, the Beagle USB 480 analyzer will truncate all incoming packets to 4 bytes. The true

length of the packet will still be reported to the user, however only the □rst 4 bytes of the given

packet will be returned. If the user is using a custom application, the remainder of the packet□eld will

be □lled with 0s. However, all packets captured when in truncation mode will be tagged with the

BG_READ_USB_TRUNCATION_MODEstatus code bit. Because packets are truncated to4bytes in length, only

DATApackets have the potential of being truncated. All tokens, handshakes, etc. will still be shown in

their entirety.

This mode truncates large packets reducing further usage of the hardwarebuffer. This allows the

analysis PC a chance to siphon more data off of the Beagle analyzer before the hardware buffer

becomes completely full. In other words the analysis port can catch up to the target traf□

c.Ifthebufferusagedropsbelowacertain threshold,theanalyzerwill automatically return to normal

operation and cease the truncation of long packets.

Delayed-download Capture

Delayed-download capture does not stream data to the analysis computer in real time, but instead

saves all of the data in the 64 MB hardwarebuffer until the user is ready to download it. The size of the

capture is clearly limited by the hardware buffer’s max capacity, so it is recommended to use the

hardware □lters to limit data-less transactions when appropriate.

The delayed-download capability will especially bene□t those users that are analyzing high-speed

traf□c, but are only using a single computer with a single host controller for both the analysis

computer and the target host computer. As described previously, devices on the same host controller

must share the available bandwidth. Also, all high-speed devices on the same host controller will see all

downstream traf□c. Therefore using delayed-download will limit the Beagle analyzer’s participation

on thebus. Infact, if no other functions are called between the enable of the capture and the disable,

there will be nearly no traf□c at all between the PC and analyzer. The only traf□c will be at the

verystart and end of the capture session.

The delayed-download will stop automatically once the buffer has reached capacity. It may also be

stopped at any timeby the userby calling the bg_usb480_readfunction. Polling of the status of the

buffer is possible through bg_usb480_hw_buffer_stats(), function call. Polling the Beagle analyzer will

createtraf□c on thebus, and thus takeup someof theavailable bandwidth. Faster polling rates will

clearly take up more bandwidth, and thus if users wish to

www.pc17.com.cn

minimize their impact on thebus, theyshould not poll thebuffer at all. Regardless, the polling

traf□c itself canbe □ltered from the analysis databyusing the hardware based Self Filter.

3.4 BeagleI
2

C/SPI/MDIOProtocol Analyzer Speci□cs

Sampling Rate

Unlike the Beagle USB analyzers, the sampling rate of the BeagleI
2

C/SPI/MDIO analyzer is con

□gurable. In order to accurately capture data the sampling rate must be properly set. For SPI

and MDIO analysis all data lines are registered using the clocklineof thebus. The internal

sampling clock is then used to retrieve the data. The sampling rate should be set to at least

twicethebitrate,butpreferablyfaster(4-5 times)if possible. Higher samplingrates canhave the

added bene□t of increasing timing precision.

Duetothe architectureofI
2

C, there are speci□cbusevents thatoccur betweenthe standard

bit-times. In order to capture these transitions, the bus must be oversampled independent of

the clock line of the bus. A sampling rate of □ ve to ten times the bus bit rate is

recom-mended. This should not be a problem, however, since the minimum sampling rate of

the BeagleI
2

C/SPI/MDIO analyzer is 10 MHz, andI
2

Cbuses usually operate at less than1 MHz

frequencies.

The one caveat to setting the sampling rate to very high values is that higher sampling rates

create moretraf□conthe analysisUSBthat connectsthe analyzertothe hostPC. Thismay or

maynot affect performance depending on the analysisPC con□guration.

www.pc17.com.cn

4 Software

4.1 Compatibility

Linux

The Beagle software is compatible with all standard 32-bit distributions of Linux with

integrated USB support.Kernel 2.6 orgreateris required.

Windows

The Beagle software is compatible with 32-bit versions of Windows 2000 SP4 and Windows XP

SP2. Currently 16-bit and 64-bit versions of Windows are not supported.

4.2 Linux USB Driver

TheBeagle communicationslayer underLinuxdoesnot requirea speci□ckerneldrivertoop-erate.

However, the user must ensure independently that the libusb library is installed on the system

since the Beagle libraryis dynamically linked to libusb.

Most modern Linux distributions use the udev subsystem to help manipulate the permissions

of various system devices. This is the preferred wayto support access to the Beagle analyzer

such that thedeviceis accessiblebyallof the users on the system upondevice plug-in.

For legacy systems, there are two different ways to access the Beagle analyzer, through USB

hotplug or by mounting the entire USB □lesystem as world writable. Both require that

/proc/bus/usbis mounted on the system which is the case on most standard distributions.

UDEV

Supportforudevrequiresasingle con □ guration □ lethatisavailableonthe softwareCD,andalso

listed on theTotal Phasewebsitefordownload. This □leis 99-totalphase.rules. Please follow

thefollowing steps to enable the appropriate permissionsfor the Beagle analyzer.

1 As superuser, unpack 99-totalphase.rulesto /etc/udev/rules.d
2 chmod 644 /etc/udev/rules.d/99-totalphase.rules

3. Unplug and replugyour Beagle analyzer(s)

USB Hotplug

USB hotplug requires two con□guration □les which are available on the software CD, and

also listedontheTotal Phasewebsitefordownload. These □les are: beagleand beagle.usermap.

Pleasefollow thefollowing steps to enable hotplugging.

1 As superuser, unpack beagleand beagle.usermapto /etc/hotplug/usb
2 chmod 755 /etc/hotplug/usb/beagle

www.pc17.com.cn

3. chmod 644 /etc/hotplug/usb/beagle.usermap

1 Unplug and replugyour Beagle analyzer(s)

2 Set the environment variable USB_DEVFS_PATHto /proc/bus/usb

World-Writable USB Filesystem

Finally, here is a last-ditch method for con□guring your Linux system in the event that your

distributiondoesnothaveudevorhotplug capabilities.Thefollowing procedureisnot necessary

ifyouwereabletoexercisethe stepsintheprevious subsections.

Often, the /proc/bus/usbdirectoryis mounted with read-write permissionsfor root and

read-only permissionsfor all other users. If an non-privileged user wishes to use the Beagle

analyzer and software, one must ensure that /proc/bus/usbis mounted with read-write

permissions for all users. Thefollowing steps can help setup the correct permissions. Please

note that these steps will make the entire USB □lesystem world writable.

1. Checkthe current permissionsby executing thefollowing command:

“ls-al/proc/bus/usb/001”

2.Ifthe contentsofthat directoryareonlywritablebyroot,proceedwiththe remainingsteps

outlined below.

3. Add thefollowing line to the /etc/fstab□le:

none /proc/bus/usb usbfs defaults,devmode=0666 0 0

1 Unmount the /proc/bus/usbdirectoryusing “umount”

2 Remount the /proc/bus/usbdirectoryusing “mount”

3 Repeatstep1.Nowthe contentsofthat directoryshouldbewritablebyall users.

4 Set the environment variable USB_DEVFS_PATHto /proc/bus/usb

4.3 Windows USB Driver

The current versionof the Beagle analyzer Windowsdriveris 1.1.0.0. Ifyou receive an error

message referring to an incompatible driver, refer to Section 4.3for instructions on uninstalling

the Beagle analyzer driver. Then download and install the latest driver from our website.

Driver Installation

On the Windows platform, the Beagle software uses a version of the libusb-win32 open source

driver to access the Beagle analyzer. For more information on this driver, please refer to the

README.txt that is included with the driver. To install the appropriate USB communication

driver under Windows, step through thefollowing instructions. This is only necessaryfor the

very□rst Beagle analyzer that is plugged into the PC. Subsequent plugs and unplugs should be

automatically handledbythe operating system.

www.pc17.com.cn

Pleasenote,youmay seeawarningwindowthat statesthatthedriverfortheBeagleanalyzer

hasnotpassedWindowsLogoTesting.Itissafeto installthedriver, sopleaseselect “Continue Anyway” to continue

installing the driver.

Windows 2000:

1 WhenyouplugintheBeagleanalyzerintoyourPCforthe□rsttime,Windowswill present the “Found New

Hardware Wizard.” Select “Next.”

2 On the next dialog window, select “Search for a suitable driver for my device (recom-mended)” and

click“Next.”

3 On the third screen, uncheckall settings and check“Specify a location” and click“Next.”

4 Click“Browse...”,navigateto eithertheCD-ROM(\usb-drivers\windowsdirectory), or temporary directory

where the driver □les have been unpacked (for downloaded up-dates).

5 Select “beagle.inf” and click“Open”, then click“OK.”

6 Click“Next” on the subsequent screen,followedby“Finish” to complete the installation. This completes the

installation of the USB driver.

Windows XP:

1 WhenyouplugintheBeagleanalyzerintoyourPCforthe□rsttime,Windowswill present the “Found New

Hardware Wizard.”

2 Select “Install from a list or speci□c location (Advanced)” and click“Next.”

3 Select “Searchfor best driver in these locations:”, uncheck “Search removable media”, check“Include this

location in the search.”

4 Click “Browse...”, expand My Computer and then navigate to either the CD-ROM

(\usb-drivers\windowsdirectory), or temporarydirectorywhere the driver □les have been unpacked (for

downloaded updates).

5 Click“OK”, then click“Next.”

6 Adialog will inform the user that the USB driver has been installed. Click“Finish.”

Both Windows 2000 and Windows XP:

1 Once the installationis complete, con□rm that the installationwas successfulbychecking that the device

appears in the “Device Manager.” To navigate to the “Device Manager” screen select “ControlPanel|System

Properties|Hardware|Device Manager.”

2 The Beagle analyzer should appear under the “LibUSB-Win32 Devices” section.

www.pc17.com.cn

Driver Removal

Ordinarily, there is usually no harm in leaving the Beagle analyzer’s USB drivers installed in the

operating system. However, if it is necessary that the drivers be removed, please follow the

steps outlined below.

1 Pluginthe Beagle analyzer whosedriveryou wishto uninstall.

2 Navigate to the “Device Manager” screenbyselecting “ControlPanel|System Properties |Hardware|Device

Manager.”

3 Right click on the Beagle analyzer which should appear under the “LibUSB-Win32 De-vices” section.

4 Open the properties dialog.

5 Select the “Driver” tab and choose “Uninstall.”

6 Repeat steps 1–5for each different type (USB,I
2

C/SPI/MDIO)of Beagledeviceyou wish to uninstall.

7 Now use the □le searchingfeature of Windows to search in c:\WINNT\inffor all □les containing the text

“Beagle.”

8 Delete all □les with the extension “.inf”.

4.4 USBPort Assignment

The Beagle analyzer is assigned a port on a sequential basis. The □rst analyzer is assigned to

port 0, the second is assigned to port 1, and so on. If a Beagle analyzer is subsequently

removed from the system, the remaining analyzers shift their port numbers accordingly.

Hence with n Beagle analyzers attached, the allocated ports will be numbered from 0to n□1.

DetectingPorts

As described in following API documentation chapter, the bg_find_devicesroutine can be used

to determine the mapping between the physical Beagle analyzers and their port numbers.

4.5 Beagle DynamicallyLinked Library

DLL Philosophy

The Beagle DLL provides a robust approach to allow present-dayBeagle-enabled applications

to interoperate with future versions of the device interface software without recompilation.

For example, take the case of a graphical application that is written to monitor I
2

C, SPI, MDIO,

or USB through a Beagle analyzer. At the time the program is built, the Beagle software is

released as version 1.2. The Beagle interface software may be improved many months later

resulting in increased performance and/or reliability; it is now released as version 1.3. The

original application need not be altered or recompiled. The user can simply replace the old

Beagle DLL with the newer one. How does this work? The application contains only a stub

www.pc17.com.cn

which in turn dynamically loads the DLL on the □rst invocation of any Beagle API function. If the

DLL is replaced, the application simply loads the new one, thereby utilizing all of the improvements

present in the replaced DLL.

On Linux, the DLL is technically known as a shared object (SO).

DLL Location

Total Phase provides language bindings that can be integrated into any custom application. The

default behavior of locating the Beagle DLL is dependent on the operating system platform and

speci□c programming language environment.Forexample,foraC or C++ application, the following

rules apply:

Ona Linux system thisis asfollows:

1 First, searchfor the shared object in the application binarypath. Note, that this step re-quires /proc□

lesystem support, whichis standardin 2.4.xkernels.Ifthe /proc□lesys-tem is not present, this step is skipped.

2 Next, search in the application’s current working directory.

3 Search the paths explicitly speci□ed in LD_LIBRARY_PATH.

4 Finally, check anysystem librarypaths as speci□ed in /etc/ld.so.confand cached in /etc/ld.so.cache.

Ona Windows system, thisis asfollows:

1 The directoryfrom which the application binary was loaded.

2 The application’s current directory.

3 32-bit system directory. (Ex: c:\winnt\System32)[Windows NT/2000/XP only]

4 16-bit system directory. (Ex: c:\winnt\Systemor c:\windows\system)

5 The windows directory. (Ex: c:\winntor c:\windows)

6 The directories listedin thePATH environmentvariable.

If the DLL is still notfound, the BG_UNABLE_TO_LOAD_LIBRARYerror will be returnedby the binding

function.

DLLVersioning

The Beagle DLL checks to ensure that the □rmware of a given Beagle analyzer is compatible.

Each DLL revision is tagged as being compatible with □rmware revisionsgreater than or equal to

a certain version number. Likewise, each □rmware version is tagged as being compatible

withDLLrevisionsgreaterthanorequaltoa speci□cversionnumber.

Here is an example.

www.pc17.com.cn

DLL v1.20: compatible with Firmware >= v1.15

Firmware v1.30: compatible with DLL >= v1.20

Hence, the DLL is not compatible with any □rmware less than version 1.15 and the □rmware

is not compatible with any DLL less than version 1.20. In this example, the version number

constraints are satis□ed and the DLL can safely connect to the target □rmware without

error. If thereisaversion mismatch,theAPIcallstoopenthedevicewillfail.SeetheAPI

documentation for further details.

4.6 Rosetta Language Bindings: API Integration into Custom Applications

Overview

The Beagle Rosetta language bindings make integration of the Beagle API into custom

appli-cations simple. Accessing a Beagle analyzer’s functionality simply requires function calls

to the BeagleAPI.ThisAPIiseasyto understand,muchliketheANSIClibraryfunctions,(e.g.,there is

no unnecessaryentanglement with the Windows messaging subsystem like development kits

for some other embedded tools).

First, choose the Rosetta bindings appropriatefor the programming language. Different

Rosetta bindings are included with the software distribution on the distribution CD. They can

also be foundin the softwaredownload packageavailable on theTotalPhasewebsite. Currently

the following languages are supported: C/C++, Python, Visual Basic6, Visual Basic .NET, and

C#. Next, follow the instructions for each language binding on how to integrate the bindings

with your application build setup. As an example, the integration for the C language bindings is

describedbelow.(Forinformationonhowtointegratethe bindingsfor other languages,please see

theexample code included on the distributionCD and alsoavailablefordownload on the Total

Phase website.)

1 Include the beagle.h□le includedwiththeAPIsoftwarepackageinanyCorC++ source module. The module

may now use anyBeagle API call listed in beagle.h.

2 Compile and link beagle.cwithyour application. Ensure that the include pathfor com-pilation also lists the

directoryin which beagle.his located if the two □les are not placed in the same directory.

3 Place the Beagle DLL, included with the API software package, in the same directory as the application

executable or in another directory such that it will be found by the previously described search rules.

Versioning

Since a new Beagle DLL can be made available to an already compiled application, it is

essen-tialto ensure the compatibilityof the Rosetta binding usedbythe application(e.g.,

beagle.c) against the DLL loaded by the system. A system similar to the one employed for the

DLL-Firmware cross-validationis usedfor the binding and DLL compatibility check.

Here is an example.

www.pc17.com.cn

DLL v1.20: compatible with Binding >= v1.10 Binding v1.15:

compatible with DLL >= v1.15

The above situation will pass the appropriate version checks. The compatibility check is

per-formed within the binding. If there is a version mismatch, the API function will return an

error code, BG_INCOMPATIBLE_LIBRARY.

Customizations

While provided language bindings stubs are fully functional, it is possible to modify the code

found within this □le according to speci□c requirements imposedbythe application designer.

Forexample,intheCbindingsonecanmodifytheDLL searchandloadingbehaviortoconform to a

speci□c paradigm. See the comments in beagle.cfor more details.

4.7 Application Notes

Receive Saturation

Once enabled, the Beagle analyzer is constantly monitoring data on the targetbus. Between

calls to the Beagle API, these messages must be buffered somewhere in memory. This is

accomplished on the analysis computer, courtesy of the operating system. Naturally thebuffer

is limitedinsizeand oncethisbufferisfull,datawillbe dropped.Anover □ owcan occurwhen the

Beagle analyzer receives datafaster than therate thatitis processed — the receive link is

‘saturated.” The system is most susceptible to saturation when monitoring large amounts of

traf□cover USB or high-speed SPIbus.

Threading

The Beagle DLL is designed for single-threaded environments so as to allow for maximum

cross-platform compatibility. If the application design requires multi-threaded use of the

Bea-gle analyzer’s functionality, each Beagle API call can be wrapped with a thread-safe

locking mechanism before and after invocation.

It is the responsibility of the application programmer to ensure that the Beagle analyzer open

and close operations are thread-safe and cannot happen concurrently with any other Beagle

analyzer operations. However, once a Beagle analyzer is opened, all operations to that device

can be dispatched to a separate thread as long as no other threads access that same Beagle

analyzer.

www.pc17.com.cn

5 Firmware

5.1 Philosophy

The □rmware included with the Beagle analyzer provides for the analysis of the supported

protocols.Itis installedatthefactoryduring manufacturing. Somepartsofthe□rmware canbe

updated automaticallybythe software. Other piecesofthe□rmware requireadeviceupgrade

utility. In those cases, the Beagle software automatically detects □rmware compatibility and

will inform the user if an upgrade is required.

5.2 Procedure

Firmware upgrades should be conducted using the procedure speci□ed in the README.txt

that accompanies the particular □rmware revision.

www.pc17.com.cn

6 API Documentation

6.1 Introduction

The API documentation describes the Beagle RosettaCbindings.

6.2 General DataTypes

Thefollowing de□nitions are providedfor convenience. The Beagle API provides both signed

and unsigned data types.

typedef unsigned char u08; typedef unsigned

short u16; typedef unsigned int u32; typedef

unsigned long long u64; typedef signed char

s08; typedef signed short s16; typedef signed

int s32; typedef signed long long s64;

6.3 Notes on Status Codes

Most of the Beagle API functions can return a status or error code back to the caller. The

complete list of status codes is provided at the end of this chapter. All of the error codes are

assigned values less than 0, separating these responses from any numerical values returned

bycertain API functions.

Each API function can return one of two error codes with respect to the loading of the

Bea-gle DLL, BG_UNABLE_TO_LOAD_LIBRARYand BG_INCOMPATIBLE_LIBRARY. If these status codes

are received, refer to the previous sections in this datasheet that discuss the DLL and API

integration of the Beagle software. Furthermore, all API calls can potentially return the errors

BG_UNABLE_TO_LOAD_DRIVERor BG_INCOMPATIBLE_DRIVER. If either ofthese errors are seen, please

make sure the driver is installed and of the correct version. Where appro-priate, compare the

language bindingversions(BG_HEADER_VERSIONfound inbeagle.hand BG_CFILE_VERSIONfound

inbeagle.c)to verify that there are no mismatches. Next, ensure thatthe Rosetta language

binding(e.g., beagle.cand beagle.h)are from the same release as the Beagle DLL. If all of these

versions are synchronized and there are still problems, please contactTotal Phase supportfor

assistance.

Note that anyAPI function that accepts a Beagle handle can potentially return the error code

BG_INVALID_HANDLEif the handle does not correspond to a valid Beagle analyzer that has already

been opened. If this error is received, check the application code to ensure that the

bg_opencommand returnedavalid handle and that this handlewas not corrupted before being

passed to the offending API function.

Finally, any API call that communicates with a Beagle analyzer can also return the error

BG_COMMUNICATION_ERROR. This means that while the Beagle handle is valid and the

com-munication channel is open, there was an error communicating with the device. This is

possible if the device was unplugged while being used.

www.pc17.com.cn

If either theI
2

C, SPI, MDIO, or USB subsystems have been disabledbybg_disable, all other API functions that interact

with I
2

C, SPI, MDIO, and USB will return BG_I2C_NOT_ENABLED, BG_SPI_NOT_ENABLED, BG_MDIO_NOT_ENABLED, or

BG_USB_NOT_ENABLED, respectively.

These common status responses are not reiteratedfor each function. Only the error codes that are speci□c to

each API function are described below.

Allof the possible error codes, along with theirvalues and status strings, are listedfollowing the API documentation.

www.pc17.com.cn

6.4 General

Interface

Find Devices (bg_□nd_devices)

int bg_find_devices (int num_devices,

u16 devices);

*

Get a list of ports to which Beagle devices are attached.

Arguments

num_devices: maximum number of devices to return devices:

arrayinto which the port numbers are returned

ReturnValue

This function returns thenumberofdevicesfound, regardlessof the arraysize.

Speci□c Error Codes

None.

Details

Each element of the arrayis written with the port number.Devices that are in use are OR’ed

with BG_PORT_NOT_FREE(0x8000). Under Linux, such

devices correspond to Beagle analyzers that are currently in use. Under Windows, such

devicesare currentlyin use,butitis not knownif thedeviceisa Beagle analyzer.Example:

Devices are attachedtoport0,1,2 ports0and2

areavailable, and port1is in-use.

array=>{ 0x0000,0x8001,0x0002}

If the input arrayis NULL, it is not □lled with any values.If there are more devices than the

arraysize (as speci□edby nelem), only the □rst nelemportnumbers will be written into the

array.

Find Devices (bg_□nd_devices_ext)

int bg_find_devices_ext (int num_devices,

u16 devices,

* int num_ids, u32

unique_ids);

*

Get a list of ports and unique IDs to which Beagle devices are attached.

Arguments

num_devices: maximum number of devices to return devices:

arrayinto which the port numbers are returned num_ids:

maximum number of device IDs to return unique_ids:

arrayinto which the unique IDs are returned

www.pc17.com.cn

ReturnValue

This function returns thenumberofdevicesfound, regardlessof the arraysizes.

Speci□c Error Codes

None.

Details

This function is the same as bg_find_devices()except that is also returns the unique IDs of each

Beagle device. The IDs are guaranteed to be non-zero if valid.

The IDs are the unsigned integer representation of the 10-digit serial numbers. Thenumberofdevices

and IDs returnedin eachof their respective arraysis determinedbythe minimumof num_devicesand

num_ids. However, if either arrayis NULL, the length passed in for the other arrayis used as-is, and

theNULLarrayis not populated. If both arrays are NULL, neither arrayis populated,but

thenumberofdevicesfoundis still returned.

Open a Beagle analyzer (bg_open)

Beagle bg_open (int port_number);

Open the Beagle port.

Arguments

port_number: The Beagle analyzer port number. This port number is the the same as the one obtained

from the bg_find_devices()function. It is a zero-based number.

ReturnValue

This function returnsa Beagle handle, whichis guaranteedtobegreater thanzeroifvalid.

Speci□c Error Codes

BG_UNABLE_TO_OPEN: The speci□ed port is not connected to a Beagle analyzer or the port is already in

use.

BG_INCOMPATIBLE_DEVICE: Thereisaversion mismatchbetweentheDLLandthe hardware. TheDLLisnotofa

suf□cient versionfor interoperabilitywiththe hardwareversionorvice versa. See bg_open_ext()in

Section 6.4for more information.

Details

This functionis recommendedfor usein simple applications whereextended informationis not

required.For more complex applications, the useof bg_open_ext()is recommended.

Open a Beagle analyzer (bg_open_ext)

Beagle bg_open_ext (int port_number, BeagleExt *bg_ext);

Open the Beagle port, returning extended information in the supplied structure.

Arguments

port_number: same as bg_openbg_ext: pointerto

pre-allocatedstructureforextendedversioninformationavailableonopen

ReturnValue

This function returnsa Beagle handle, whichis guaranteedtobegreater thanzeroifvalid.

www.pc17.com.cn

Speci□c Error Codes

BG_UNABLE_TO_OPEN: The speci□ed port is not connected to a Beagle analyzer or the port is already in use.

BG_INCOMPATIBLE_DEVICE: Thereisaversion mismatchbetweentheDLLandthe hardware. TheDLLisnotofa suf□

cient versionfor interoperabilitywiththe hardwareversionorvice versa.

Theversioninformationwillbeavailableinthe memorypointedtoby bg_ext.

Details

If 0 is passed as the pointer to the structure bg_ext, this function will behave exactly like bg_open().

The BeagleExtstructure is described below:

struct BeagleExt {

BeagleVersion version;

/* Feature bitmap for this device. */

int features;

};

The features □eld denotes the capabilities of the Beagle analyzer. See the API function bg_featuresfor more

information.

The BeagleVersionstructure describes the various version dependencies of Beagle compo-nents. It can be

used to determine which component caused an incompatibility error.

struct BeagleVersion {

/* Software, firmware, and hardware versions. */

u16 software;

u16 firmware;

u16 hardware;

/*

 * Hardware revisions that are compatible with this software version.

 * The top 16 bits gives the maximum accepted hw revision.

 * The lower 16 bits gives the minimum accepted hw revision.

*/

u32 hw_revs_for_sw;

/*

 * Firmware revisions that are compatible with this software version.

 * The top 16 bits gives the maximum accepted fw revision.

 * The lower 16 bits gives the minimum accepted fw revision.

*/

u32 fw_revs_for_sw

/*

 * Driver revisions that are compatible with this software version.

 * The top 16 bits gives the maximum accepted driver revision.

 * The lower 16 bits gives the minimum accepted driver revision.

 * This version checking is currently only pertinent for WIN32

 * platforms.
*/

www.pc17.com.cn

u32 drv_revs_for_sw;

/* Software requires that the API must be >= this version. */ u16 api_req_by_sw;

};

Allversionnumbers areof theformat:

(major « 8) | minor
example: v1.20would be encoded as 0x0114.

The structure is zeroed before the open is attempted. It is □lled with whatever information is

available. For example, if the hardware version is not □lled, then the device could not be queriedfor

itsversionnumber.

This functionis recommendedfor usein complex applications whereextended informationis

required.For simpler applications, the useof bg_open()is recommended.

Close a Beagle analyzer connection (bg_close)

int bg_close (Beagle beagle);

Close the Beagle analyzer port.

Arguments

beagle: handle of a Beagle analyzer to be closed

ReturnValue

The number of analyzers closed is returned on success. This will usually be 1.

Speci□c Error Codes

None.

Details

If the handleargument is zero, the function will attempt to close all possible handles, thereby closing all

open Beagle analyzer. The totalnumberof Beagle analyzers closedis returnedby the function.

Get Features (bg_features)

int bg_features (Beagle beagle);

Return thedevicefeatures asa bit-maskofvalues, or an error codeif the handleis notvalid.

Arguments

beagle: handle of a Beagle analyzer

ReturnValue

Thefeaturesof the Beagle analyzer are returned. These area bit-maskof thefollowingvalues.

#define BG_FEATURE_NONE (0)

#define BG_FEATURE_I2C (1<<0)

#define BG_FEATURE_SPI (1<<1)

#define BG_FEATURE_USB (1<<2)

#define BG_FEATURE_MDIO (1<<3)

www.pc17.com.cn

Speci□c Error Codes

None.

Details

None.

Get FeaturesbyUniqueID (bg_unique_id_to_features)

intbg_unique_id_to_features(u32unique_id);Returnthe bitmaskofdevicefeaturesforthegiven Beagledevice,

identi□edby unique_id.

Arguments

beagle: unique ID of a Beagle analyzer

ReturnValue

Thefeatures of the Beagle analyzer are returned. See bg_features()for details on the bit map.

Speci□c Error Codes

None.

Details

None.

GetPort (bg_port)

int bg_port (Beagle beagle);

Return the port numberfor this Beagle handle.

Arguments

beagle: handle of a Beagle analyzer

ReturnValue

The port number corresponding to the given handle is returned. It is a zero-based number.

Speci□c Error Codes

None.

Details

None.

Get Unique ID (bg_unique_id)

u32 bg_unique_id (Beagle beagle);

Return the unique ID of the given Beagle analyzer.

Arguments

beagle: handle of a Beagle analyzer

ReturnValue

www.pc17.com.cn

This function returns the unique ID for this Beagle analyzer. The IDs are guaranteed to be non-zero if

valid. The ID is the unsigned integer representation of the 10-digit serial number.

Speci□c Error Codes

None.

Details

None.

Status String (bg_status_string)

const char *bg_status_string (int status);

Return the status stringfor the given status code.

Arguments

status: status code returnedby a Beagle API function

ReturnValue

This function returns a human readable string that corresponds to status. If the code is not valid, it

returns a NULL string.

Speci□c Error Codes

None.

Details

None.

Version (bg_version)

int bg_version (Beagle beagle, BeagleVersion *version);

Returntheversion matrixforthedevice attachedtothegiven handle.

Arguments

beagle: handle of a Beagle analyzerversion: pointer to pre-allocated structure

ReturnValue

ABeagle status code is returned withBG_OKon success.

Speci□c Error Codes

BG_COMMUNICATION_ERROR: The □rmware of the speci□ed device can not be determined.

Details

If the handleis0 orinvalid, only the softwareversionis set.See the details of bg_open_ext()for the de□

nition ofBeagleVersion.

www.pc17.com.cn

Capture Latency(bg_latency)

int bg_latency (Beagle beagle, u32 milliseconds);

Set the capture latency to the speci□ed number of milliseconds.

Arguments

beagle: handle of a Beagle analyzermilliseconds: new capture latency in milliseconds

ReturnValue

ABeagle status code is returned withBG_OKon success.

Speci□c Error Codes

BG_STILL_ACTIVE: An attempt was made to change the con□guration while the capture was still active.

Details

Set the capture latency to the speci□ed number of milliseconds.

The capture latency effectively splits up the total amount of buffering (as determined by

bg_host_buffer_size())into smaller individual buffers. Only once one of these individ-ualbuffers is □

lled, does the read function return. Therefore, in order to ful□ll shorter latency requirementsthese

individualbuffersaresettoa smallersize.Ifalargerlatencyis requested, thenthe

individualbufferswillbesettoalargersize.

Settingasmalllatencycan increasethe responsivenessofthereadfunctions.Itisimportantto

keepinmindthatthereisa□xedcostto processingeachindividualbufferthatis independent ofbuffersize.

Therefore,thetrade-offisthatusinga small latencywill increasetheoverhead perbyte buffered.Alarge

latency setting decreases thatoverhead,but increases the amountof timethatthelibrary

mustwaitforeachbufferto□llbeforethelibrary can processtheir contents.

This setting is distinctly different than the timeout setting. The latency time should be set to a value

shorter than the timeout time.

TimeoutValue (bg_timeout)

int bg_timeout (Beagle beagle, u32 milliseconds);

Set the read timeout to the speci□ed number of milliseconds.

Arguments

beagle: handle of a Beagle analyzermilliseconds: new timeout value in milliseconds

ReturnValue

ABeagle status code is returned withBG_OKon success.

Speci□c Error Codes

None.

Details

www.pc17.com.cn

Set the idle timeout to the speci□ed number of milliseconds.This function sets the amountoftime that

the read functions willwait before returningif thebusisidle.Ifaread functionis calledand

therehasbeennonewdataonthebusforthe speci□edtimeout interval, the function will return with the

BG_READ_TIMEOUT□ag of the statusvalue

setandthe returnvaluewill indicatethenumberofbytesofdatathattheBeagleanalyzerwasable to capture

prior to the timeout.If the timeout is set to 0, there is no timeout interval and the read functions will

block until

the requested amountof datais captured ora complete packet with the appropriatebus end

condition is observed.This setting is distinctly different than the latency setting. The timeout time

should be set to avalue longer than the latency time.

Sleep (bg_sleep_ms)

u32 bg_sleep_ms (u32 milliseconds);

Sleepforgiven amountof time.

Arguments

milliseconds: number of milliseconds to sleep

ReturnValue

This function returns the number of milliseconds slept.

Speci□c Error Codes

None.

Details

This function provides a convenient cross-platform function to sleep the current thread using

standard operating system functions.The accuracy of this function depends on the operating system

scheduler. This function willreturn the number of milliseconds that were actually slept.

TargetPower (bg_target_power)

int bg_target_power (Beagle beagle, u08 power_flag);

Activate/deactivate targetpower pins4and6.

Arguments

beagle: handle of a Beagle analyzerpower_mask: enumeratedvalues specifyingpowerpin state. SeeTable

6.

Table6:Power Flag de□nitions

BG_TARGET_POWER_OFF Disable target power pin

BG_TARGET_POWER_ON Enable target power pin

BG_TARGET_POWER_QUERY Queries the target power pin state

ReturnValue

www.pc17.com.cn

The current state of the target power pins on the Beagle analyzer will be returned. The con□

g-uration willbe describedbythe samevalues asin the table above.

Speci□c Error Codes

BG_FUNCTION_NOT_AVAILABLE: The hardware version is not compatible with this feature. Only the

BeagleI
2

C/SPI/MDIO monitor supportsswitchable targetpower pins.

Details

This functionis onlyavailable on the BeagleI
2

C/SPI/MDIO Protocol Analyzer.

Both target power pins are controlled together. Independent control is not supported. This function

maybe executed in anyoperation mode. For the most part, target power should be left off, as the

Beagle analyzer is normally passively

monitoring thebus.

Host Interface Speed (bg_host_ifce_speed)

int bg_host_ifce_speed (Beagle beagle);

Querythe host interface speed.

Arguments

beagle: handle of a Beagle analyzer

ReturnValue

This function returns enumerated values specifying the USB speed at which the analysis com-puteris

communicatingwiththegivenBeagleanalyzer.SeeTable 7.

Table7:Interface Speed de□nitions

Speci□c Error Codes

None.

Details

Used to determine the USB communication rate between the Beagle analyzer and the analysis PC.

The Beagle analyzers require a high-speed USB connection with the host. Capturing from a

Beagle analyzer that is connected at full-speed can cause data to be lost and corruption of

capture data.

Buffering

Host Buffer Size (bg_host_buffer_size)

int bg_host_buffer_size(Beagle beagle, u32 size_bytes);

Setthe amountofbuffering thatistobe allocatedonthe analysisPC

Arguments

beagle: handle of a Beagle analyzer

www.pc17.com.cn

num_bytes: numberofbytesinbuffer

ReturnValue

This function returns the actual amountofbuffering set.

Speci□c Error Codes

BG_STILL_ACTIVE: An attempt was made to change the con□guration while the capture was still active.

Details

This function sets the amount of memory allocated tobuffering data that has been siphoned off the

Beagle analyzerby the host software library,but notyet readby the application. The absolute

minimumand maximumvaluesfor thisbuffersize are64kBand16MB, respectively. The requestedbuffer

size is matched as closely as possibleby the function, and the function willkeepthe actualbuffersize

within these boundaries. Forexample,if32kBofbufferingis requested, then 64 kB will actually be set.

If num_bytesis0,the functionwill returnthe amountofbuffering currentlysetonthePCand will leave the

amountofbuffering unmodi□ed. This function canbe calledin thisfashioneven when the capture is

active as it does not attempt to change the con □ guration. It is important to note that

bg_latency()and bg_sample_rate()can have an effect on the totalbuffer size. Therefore,to accurately

determinehowmuchbufferinghasbeensetonthePC,thiscall should be made after all the con□gurations

have been set.

If the application does not read data from the software libraryquickly enough, the entire

host-sidebufferwill□ll.FormostoftheBeagleanalyzersthis meansthatanynewtraf□conthetarget bus

will be dropped. The Beagle USB 480 analyzer, however, has a large on-board memory

buffertosolvethisissue.To understandtheoperationoftheBeagleUSB480analyzerandhow it relates to

the API, please refer to Section 6.8.

Available Read Buffering (bg_host_buffer_free)

int bg_host_buffer_free (Beagle beagle);

Querythe amountof readbufferingavailable.

Arguments

beagle: handle of a Beagle analyzer

ReturnValue

The amountofavailable USB readbufferinginbytes.

Speci□c Error Codes

None.

Details

USB read buffers are used by the analysis computer to receive the incoming data from the Beagle

analyzer. Calling this function will returnthe amountofPCbufferingavailableto receive data as of the

last bg_*_read()call.Ifthe amountofavailableUSBbufferingdrops closeto zero, capture data from the

device maybe lost.

www.pc17.com.cn

Used Read Buffering (bg_host_buffer_used)

int bg_host_buffer_used (Beagle beagle);

Querythe amountof used USB readbuffering.

Arguments

beagle: handle of a Beagle analyzer.

ReturnValue

The amountof used USB readbufferinginbytes.

Speci□c Error Codes

None.

Details

USB read buffers are used by the analysis computer to receive the incoming data from the Beagle

analyzer. Calling this function will returnthe amountofPCbuffering □lled with received data as of

the last bg_*_read()call. If the amount of used USBbuffering comes close to the totalbuffer size,

capture data from thedevice maybe lost.

Communication Speed Benchmark (bg_commtest)

int bg_commtest (Beagle beagle, int num_samples, int delay_count);

Test the Beagle analyzer communication link performance.

Arguments

beagle: handle of a Beagle analyzer num_samples: number of samples to receive from the analyzer.

delay_count: count delay on the host before processing each sample

ReturnValue

The number of communication errors received during the test.

Speci□c Error Codes

None.

Details

This function tests the host computer’sability to process data received from the Beagle analyzer.

The function commands the given Beagle analyzer to send test packets at the given frequency

(see bg_samplerate())to the host computer over the USB interface. Thedelay_countvari-able

providesawayfor the application programmer to add an arti□cial counter delaybetween

eachsample processedbythehost.Forlargedelay values,itwillbeharderforthehosttokeep up withthe

datarateovertheUSBbus, therebyleadingto more communication errors.

Monitoring API

Enable Monitoring (bg_enable)

int bg_enable (Beagle beagle, BeagleProtocol protocol);

Start monitoring packets on the selected interface.

www.pc17.com.cn

Arguments

beagle: handle of a Beagle analyzerprotocol: enumeratedvalues specifyingthe protocolto monitor(seeTable8)

Table8:BeagleProtocolenumeratedvalues

BG_PROTOCOL_NONE No Protocol

BG_PROTOCOL_COMMTEST Comm Tester

BG_PROTOCOL_USB USB Protocol

BG_PROTOCOL_I2C I2CProtocol

BG_PROTOCOL_SPI SPI Protocol
BG_PROTOCOL_MDIO MDIO Protocol

ReturnValue

ABeagle status code ofBG_OKis returned on success.

Speci□c Error Codes

BG_FUNCTION_NOT_AVAILABLE: The connected Beagle analyzer does not support capturing for the

requested protocol.

BG_UNKNOWN_PROTOCOL: Aprotocol was requested that does not appear in the enumeration

detailedinTable 8.

Details

This function enables monitoring on the given Beagle analyzer. See the section on the protocol-speci□

c APIs. Functionsfor retrieving the capture data from the Beagle analyzer are described therein.

Stop Monitoring (bg_disable)

int bg_disable (Beagle beagle);

Stop monitoring of packets.

Arguments

beagle: handle of a Beagle analyzer

ReturnValue

ABeagle status code ofBG_OKis returned on success.

Speci□c Error Codes

None.

Details

Stops monitoring on the given Beagle analyzer.

Sample Rate (bg_samplerate)

int bg_samplerate (Beagle beagle, int samplerate_khz);

Set the sample rate in kilohertz.

www.pc17.com.cn

Arguments

beagle: handle of a Beagle analyzersamplerate_khz: New sample rate in kilohertz

ReturnValue

This function returns the actual sample rate set.

Speci□c Error Codes

BG_FUNCTION_NOT_AVAILABLE: The Beagle analyzer does not supportchanging the sample rate.

BG_STILL_ACTIVE: An attempt was made to change the con□guration while the capture was still active.

Details

Changes the sampleratefora Beagle analyzer. Thedevicemust not currentlyhave monitoring

enabled. If samplerate_khzis 0, the function will return the sample rate currently set on the Beagle

analyzer and the sample rate will be left unmodi□ed. The Beagle USB 12 analyzer and the Beagle USB

480 analyzer do not support changing the sample rate, so it will always return the current sample rate.

Bit Timing Size (bg_bit_timing_size)

int bg_bit_timing_size (BeagleProtocol protocol, int num_data_bytes);

Getthesizeofthe timing dataforthegiven protocoland datasize.

Arguments

protocol: enumeratedvalues specifying the protocolof the data (seeTable 8)

num_data_bytes: numberof databytesexpected

ReturnValue

Thenumberof timing entriestoexpectforgivennumberof databytesforthegivenprotocol.

Speci□c Error Codes

None.

Details

Call this function before calling the bg_***_read_bit_timing()API functions to determine

how large a bit_timingarrayto allocate.For BG_PROTOCOL_MDIO, this function will always return the value

32, regardless of the thevalue passedfor num_data_bytes.

www.pc17.com.cn

6.5 Notes on Protocol-Speci□c Read Functions

All read functions returna statusvalue through the statusparameter.Table 9providesa listing

of all the status codes that are shared throughout all the protocols.

Table9:Read Status de□nitions

BG_READ_OK Read successful.

BG_READ_TIMEOUT No data was seen before the timeout interval

oc-curred. This mayindicate that no data was

seen on the bus or there was a pause in the

transmis-sion of data longer than the timeout

interval.
BG_READ_ERR_MIDDLE_OF_PACKET Data collection was started in the middle of a

packet. This indicates that a transaction was

al-ready being transmitted across the bus

when the read function was called.
BG_READ_ERR_SHORT_BUFFER The packet was longer than the buffer size.

The buffer passed to the read function was too

short to contain the full data of the

transaction.
BG_READ_ERR_PARTIAL_LAST_BYTE The last byte in the buffer is incomplete. The

num-ber of bits of data captured did not align

to the ex-pected data size. For example, for

I2Cthe number of bits received was not a

multiple of 9(8 data bits plus 1ACK/NACK bit).
BG_READ_ERR_UNEXPECTED An unexpected event occurred on the bus. The

event is still presented to the user, however it is

tagged with this status □ag.

www.pc17.com.cn

6.6 I
2

CAPI Notes

TheI
2

CAPI functions are onlyavailablefor the BeagleI
2

C/SPI/MDIO Protocol Analyzer.

I
2

CMonitor Interface

I
2

CPullups (bg_i2c_pullup)

int bg_i2c_pullup (Beagle beagle,

u08 pullup_flag);

Enables, disables and queries theI
2

Cpullup resistors.

Arguments

beagle: handle of a Beagle analyzer pullup_flag: the functiontoperformas detailedinTable 10

Table10:Pullup de□nitions

BG_I2C_PULLUP_OFF Disable the pullup resistors.

BG_I2C_PULLUP_ON Enable the pullup resistors.

BG_I2C_PULLUP_QUERY Querythe status of the pullup resistors.

ReturnValue

ABeagle status code ofBG_OKis returnedon success.Ifthevalue passedfor pullup_flagis

BG_I2C_PULLUP_QUERY, the state of the pullups is returned.

Speci□c Error Codes

BG_FUNCTION_NOT_AVAILABLE: The hardware version is not compatible with this feature. OnlyI
2

Cdevices

supportswitchable pullup pins.

Details

Sets and queries the state of the pullup resistors on theI
2

Clines. Normally the pullups will be setbythe

host and targetdevices, so this function will notbe used.

ReadI
2

C(bg_i2c_read)

int bg_i2c_read (Beagle beagle,

u32 status,

*

u64 time_sop,

* u64 time_duration,

* u32 time_dataoffset,

*

int max_bytes,

u16 data_in);

*

Read packet from theI
2

Cport.

Arguments

beagle: handle of a Beagle analyzer

www.pc17.com.cn

status: □lled with the status bitmask as detailedinTables 9and11 time_sop: □lled with the timestamp when the

packet begins time_duration: □lled with the number of ticks that it took to read the data time_dataoffset: □lled

with the timestamp when data appeared on thebus max_bytes: maximumnumberofbytesto read data_in: an

allocated arrayof u16which is □lled with the received data

Table 11: I
2

CSpeci□c Read Status de□nitions

BG_READ_I2C_NO_STOP The I
2

C stop condition was not observed on the bus. This canbe caused eitherbya read timeout

orby aI
2

Crepeated start condition.

ReturnValue

This function returns thenumberofbytes read ora negativevalue indicating an error.

Speci□c Error Codes

None.

Details

Thefunction willblockuntilthe requested amountof datais captured,a complete packet witha stopor repeated

startconditionis observed,orthebusis idlefor longer thanthe timeout interval set. See Section 6.4for information

on thebg_latency()and bg_timeout()functions which affect the behavior of this function.

For each u16 written todata_inbythe function,thelower 8-bits representthevalueofabyte of data sent across

thebus and bit8represents theACK orNACKvaluefor thatbyte.A0in bit

8representsanACKanda1inbit8representsaNACK.SeeTable12for constants thatmay be used as bit mask to

access the appropriate □elds in data_in.

All of the timing data is measured in ticks of the sample rate clock.

Table 12: I
2

CData Mask constants

Constant name Value Description

BG_I2C_MONITOR_DATA 0x00ff Mask to access data □eld.
BG_I2C_MONITOR_NACK 0x0100 Mask to access ACK/NACK □eld.

The data_inpointer should be allocated at least as large as max_bytes. All of the timing data is

measured in ticks of the sample clock.

ReadI
2

Cwith data-level timing (bg_i2c_read_data_timing)

int bg_i2c_read_data_timing (Beagle beagle,

u32 status,

* u64 time_sop,

* u64 time_duration,

* u32 time_dataoffset,

* int max_bytes,

www.pc17.com.cn

u16 data_in,

* int max_timing, u32

data_timing);

*

Read data from theI
2

Cport.

Arguments

common_args: see bg_i2c_read()for common arguments max_timing: size of data_timingarray

data_timing: an allocated array of u32which is □lled with timing data for each data word

read

ReturnValue

This function returns thenumberofbytes read ora negativevalue indicating an error.

Speci□c Error Codes

None.

Details

This function is an extension ofthe bg_i2c_read()function with the addedfeature of giving

data-level timing. All of the bg_i2c_read()arguments and details apply.The values in the

data_timingarray give the offset of the start of each data word fromtime_sop.Adataword includes

all8bitsof data aswell as the acknowledgment bit.

The data_timingarrayshould be allocated at least as large as max_timing.

ReadI
2

Cwith bit-level timing (bg_i2c_read_bit_timing)

int bg_i2c_read_bit_timing (Beagle beagle,

u32 * status,

u64 time_sop,

* u64 time_duration,

* u32 time_dataoffset,

* int max_bytes, u16

data_in,

* int max_timing, u32

bit_timing);

*

Read data from theI
2

Cport.

Arguments

common_args: see bg_i2c_read()for common arguments max_timing: size of bit_timingarray bit_timing:

an allocated arrayof u32whichis □lled with the timing datafor each bit read

ReturnValue

This function returns thenumberofbytes read ora negativevalue indicating an error.

Speci□c Error Codes

None.

Details

www.pc17.com.cn

This function is an extension ofthe bg_i2c_read()function with the addedfeature of givingbit-level timing. All of the

bg_i2c_read()arguments and details apply.

The values in the bit_timingarraygive the offset of each bit from time_sop.The bit_timingarray should be allocated

at least as large as max_timing. Use the func-tion bg_bit_timing_size()(in Section 6.4)to determine how large an

array to allocatefor

bit_timing.

www.pc17.com.cn

6.7 SPI API

Notes

The SPI API functions are onlyavailablefor the BeagleI
2

C/SPI/MDIO Protocol Analyzer.

SPI Monitor Interface

SPI Con□guration (bg_spi_con□gure)

int bg_spi_configure (Beagle beagle, BeagleSpiSSPolarity ss_polarity,

BeagleSpiSckSamplingEdge sck_sampling_edge,

BeagleSpiBitorder bitorder);

Sets SPIbus parameters.

Arguments

beagle: handle of a Beagle analyzer ss_polarity:

sets the slave select detection to active-low or

active-high bit polarity, seeTa-ble13

sck_sampling_edge: sets data sampling on the

leading or trailing edge of the clock signal,

seeTable 14 bitorder: sets big-endian or

little-endian bit order, seeTable 15

Table15:SPI Bit Order de□nitions

ReturnValue

ABeagle statuscodeofBG_OKis returnedon successoran errorcodeas detailedinTable30.

Speci□c Error Codes

BG_STILL_ACTIVE: An attempt was made to change the con□guration while the capture was still active.

www.pc17.com.cn

BG_FUNCTION_NOT_AVAILABLE: The hardware version is not compatible with this feature. Only

theI
2

C/SPI/MDIOdevice supports SPI con□guration.

Details

The SPI standardismuch more loosely de□ned thanI
2

C, MDIO, or USB.Asa consequence, the SPI

monitor must be con□gured to match the parameters of the device being monitored. If the con□

guration of the SPI monitor does not match the con□guration of the SPI devices being monitored, the

capture data from the monitor maybe corrupted.

Read SPI (bg_spi_read)

int bg_spi_read (Beagle beagle,

u32 status,

* u64 * time_sop, u64

time_duration,

* u32 time_dataoffset,

* int mosi_max_bytes, u08

data_mosi,

* int miso_max_bytes, u08

data_miso);

*

Read data from the SPI port.

Arguments

beagle: handle of a Beagle analyzer status: □lled with the status bitmask as detailedinTable 9

time_sop: □lled with the timestamp when the data read begins time_duration: □lled with the number

of ticks that it took to read the data time_dataoffset: □lled with the timestamp when data appeared

on thebus mosi_max_bytes: maximumnumberof MOSIbytesto □ll data_mosi: an allocated arrayof

u08which is □lled with the data sent from the master to the

slave miso_max_bytes: maximumnumberof MISObytesto □ll data_miso: an allocated arrayof

u08which is □lled with the data sent from the slave to the

master

ReturnValue

This function returns thenumberofbytes read ora negativevalue indicating an error.

Speci□c Error Codes

None.

Details

The function willblockuntil the requested amountof datais captured,a completepacket with slave

select deassertion is observed, or thebus is idlefor longer than the timeout interval set. See Section 6.4

for information on the bg_latency()and bg_timeout()functions which affect the behavior of this

function.

The data_mosiarray should be allocated at least as large as mosi_max_bytes. The data_misoarrayshould

be allocated at least as large as miso_max_bytes.

www.pc17.com.cn

All of the timing data is measured in ticks of the sample clock.

Read SPI with data-level timing (bg_spi_read_data_timing)

int bg_spi_read_data_timing (Beagle beagle,

u32 status,

* u64 time_sop,

* u64 time_duration,

* u32 time_dataoffset,

* int mosi_max_bytes, u08

data_mosi,

* int miso_max_bytes, u08

data_miso,

* int max_timing, u32

data_timing);

*

Read data from the SPI port.

Arguments

common_args: see bg_spi_read()for common arguments max_timing: size of data_timingarray

data_timing: an allocated array of u32which is □lled with timing data for each data word

read

ReturnValue

This function returns thenumberofbytes read ora negativevalue indicating an error.

Speci□c Error Codes

None.

Details

This function is an extension of the bg_spi_read()function with the addedfeature ofbyte-

level timing. All of the bg_spi_read()arguments and details apply.The values in the data_timingarray

give the offset of the start of each data word fromtime_sop.For SPI,a datawordis considereda

singlebyte.

The data_timingarrayshould be allocated at least as large as max_timing.

Read SPI with bit-level timing (bg_spi_read_bit_timing)

int bg_spi_read_bit_timing (Beagle beagle,

u32 status,

* u64 time_sop,

* u64 time_duration,

* u32 * time_dataoffset, int

mosi_max_bytes, u08 data_mosi,

* int miso_max_bytes, u08

data_miso,

* int max_timing, u32

bit_timing);

*

www.pc17.com.cn

Read data from the SPI port.

Arguments

common_args: see bg_spi_read()for common arguments max_timing: size of bit_timingarray bit_timing: an

allocated arrayof u32whichis □lled with the timing datafor each bit read

ReturnValue

This function returns thenumberofbytes read ora negativevalue indicating an error.

Speci□c Error Codes

None.

Details

This function is an extension of the bg_spi_read()function with the addedfeatureof bit-leveltiming. All of

the bg_spi_read()arguments and details apply.

The values in the bit_timingarraygive the offset of each bit from time_sop.The bit_timingarray should be

allocated at least as large as max_timing. Use the func-tion bg_bit_timing_size()(in Section 6.4)to

determine how large an array to allocatefor

bit_timing.

www.pc17.com.cn

6.8 USB API

Notes

1 The USB12 API functions are onlyavailablefor the Beagle USB12 Protocol Analyzer.

2 The USB 480 API functions are onlyavailablefor the Beagle USB 480 Protocol Analyzer.

3 The □rst byte of the captured USB packet is the packet ID (PID). An enumeration is provided that de□

nes all the possible PIDs whichis listedinTable 16.

Table16:USBPacket ID de□nitions

BG_USB_PID_OUT 0xe1

BG_USB_PID_IN 0x69

BG_USB_PID_SOF 0xa5

BG_USB_PID_SETUP 0x2d

BG_USB_PID_DATA0 0xc3

BG_USB_PID_DATA1 0x4b

BG_USB_PID_DATA2 0x87

BG_USB_PID_MDATA 0x0f

BG_USB_PID_ACK 0xd2

BG_USB_PID_NAK 0x5a

BG_USB_PID_STALL 0x1e

BG_USB_PID_NYET 0x96

BG_USB_PID_PRE 0x3c

BG_USB_PID_ERR 0x3c

BG_USB_PID_SPLIT 0x78

BG_USB_PID_PING 0xb4

BG_USB_PID_EXT 0xf0

4.In additiontothegeneralread statusvaluesinTable 9,theUSBread functionscanalso return USB speci □ c

statusvalues. The enumerated types are listedinTable 17.

5. Additional event informationis returnedbythe USB read functions through the eventsargument. The event

information is bitmask encoded with the enumerated types de□ned in Table 18. Refer to Section 1.1 for details

on how these events pertain to the USB architecture.

www.pc17.com.cn

Table17:USB Read Status de□nitions

Status Codes for USB 12 and USB 480

BG_READ_USB_ERR_BAD_SIGNALS Incorrect line states

BG_READ_USB_ERR_BAD_PID Captured packet has bad PID

BG_READ_USB_ERR_BAD_CRC Captured packet has bad CRC

USB 12 Speci□c Status Codes

BG_READ_USB_ERR_BAD_SYNC Cannot □nd SYNC signal
BG_READ_USB_ERR_BIT_STUFF Bit stuf□ng error detected

BG_READ_USB_ERR_FALSE_EOP Incorrect End of packet

BG_READ_USB_ERR_LONG_EOP End of packet too long

USB 480 Speci□c Status Codes
BG_READ_USB_TRUNCATION_MODE Captured packet in truncation mode

BG_READ_USB_END_OF_CAPTURE Capture has ended

Table18:USB Event Code de□nitions

Event Codes for USB 12 and USB 480

BG_READ_USB_HOST_DISCONNECT Target Host disconnected

BG_READ_USB_TARGET_DISCONNECT Target Device disconnected

BG_READ_USB_HOST_CONNECT Target Host connected

BG_READ_USB_TARGET_CONNECT Target Device connected

BG_READ_USB_RESET Bus put into reset state

USB 480 Speci□c Event Codes

BG_EVENT_USB_J_CHIRP Chirp-J detected

BG_EVENT_USB_K_CHIRP Chirp-K detected

BG_EVENT_USB_SPEED_UNKNOWN Communication speed is unknown
BG_EVENT_USB_LOW_SPEED Low-speed bus operation detected

BG_EVENT_USB_FULL_SPEED Full-speed bus operation detected

BG_EVENT_USB_HIGH_SPEED High-speed bus operation detected

BG_EVENT_USB_LOW_OVER_FULL_SPEED
Low-over-full-speed bus operation

detected
BG_EVENT_USB_SUSPEND Bus has entered suspend state

BG_EVENT_USB_RESUME Bus has left suspend state

BG_EVENT_USB_KEEP_ALIVE Low-speed keep-alive detected

BG_EVENT_USB_OTG_HNP OTG HNP detected

BG_EVENT_USB_OTG_SRP_DATA_PULSE OTG SRP data-line pulse detected
BG_EVENT_USB_OTG_SRP_VBUS_PULSE OTG SRP Vbus pulse detected

BG_EVENT_USB_DIGITAL_INPUT One or more digital inputs have changed

state

BG_EVENT_USB_DIGITAL_INPUT_MASK Bitmask of line state for each input pin

www.pc17.com.cn

USB 12 Monitor Interface

Read USB (bg_usb12_read)

int bg_usb12_read (Beagle beagle,

u32 status,

* u32 * events, u64

time_sop,

* u64 time_duration,

* u32 time_dataoffset,

* int max_bytes, u08

packet);

*

Read data from the USB port.

Arguments

beagle: handle of a Beagle analyzer status: □lled with the status bitmask as detailedinTable

9andTable 17 events: □lled with theevent bitmask as detailedinTable 18 time_sop: □lled with the

timestamp when the data read begins time_duration: □lled with the number of ticks that it took

to read the data time_dataoffset: □lled with the timestamp when data appeared on thebus

max_bytes: maximumnumberofbytesto read packet: an allocated arrayof u08which is □lled with the

received data

ReturnValue

This function returns thenumberofbytes read ora negativevalue indicating an error.

Speci□c Error Codes

None.

Details

The function willblockuntil the requested amountof datais captured,a completepacket withthe

appropriate end of packet condition is observed, or thebus is idlefor longer than the time-out

interval set. See Section 6.4 for information on the bg_latency()and bg_timeout()functions which

affect the behavior of this function.

The packetarrayshould be allocated at least as large as max_bytes.All of the timing data is

measured in ticks of the sample clock. The Beagle USB 12 analyzer islocked to a 48 MHz sample

rate, thus each count measures 20.83 ns.

Read USB with data-level timing (bg_usb12_read_data_timing)

int bg_usb12_read_data_timing (Beagle beagle,

u32 status,

* u32 events,

* u64 time_sop,

* u64 * time_duration, u32

time_dataoffset,

*

www.pc17.com.cn

int max_bytes, u08 packet,

* int max_timing, u32

data_timing);

*

Read data from the USB port.

Arguments

common_args: see bg_usb12_read()for common arguments max_timing: size of data_timingarray

data_timing: an allocated array of u32which is □lled with timing data for each data-word

read

ReturnValue

This function returns thenumberofbytes read ora negativevalue indicating an error.

Speci□c Error Codes

None.

Details

This function is an extension of the bg_usb12_read()function with the addedfeatureofbyte-

level timing. All of the bg_usb12_read()arguments and details apply.The values in the data_timingarray

give the offset of the start of each data word fromtime_sop.For USB,a datawordis considereda

singlebyte.

The data_timingarrayshould be allocated at least as large as max_timing.

Read USB with bit-level timing bg_usb12_read_bit_timing)

int bg_usb12_read_bit_timing (Beagle beagle,

u32 status,

* u32 events,

* u64 time_sop,

* u64 time_duration,

* u32 time_dataoffset,

* int max_bytes, u08 packet,

* int max_timing, u32

bit_timing);

*

Read data from the USB port.

Arguments

common_args: see bg_usb12_read()for common arguments max_timing: size of bit_timingarray

bit_timing: an allocated arrayof u32whichis □lled with the timing datafor each bit read

ReturnValue

This function returns thenumberofbytes read ora negativevalue indicating an error.

Speci□c Error Codes

www.pc17.com.cn

None.

Details

This function is an extension of the bg_usb12_read()function with the addedfeature of bit-level timing. All of

the bg_usb12_read()arguments and details apply.

The values in the bit_timingarraygive the offset of each bit from time_sop.The bit_timingarray should be

allocated at least as large as max_timing. Use the func-tion bg_bit_timing_size()(in Section 6.4)to determine

how large an array to allocatefor

bit_timing.

www.pc17.com.cn

USB 480 Monitor Interface

Con□gure USB 480 Capture (bg_usb480_capture_con□gure)

int bg_usb480_capture_configure (Beagle beagle, BeagleUsb480CaptureMode capture_mode,

* BeagleUsb480TargetSpeed

target_speed);

*

Con□gure the Beagle USB 480 analyzer.

Arguments

beagle: handle of a Beagle analyzer capture_mode: modeof packet capture as detailedinTable 19

target_speed: intended speedof packet capture as detailedinTable 20

Table19:BeagleUsb480CaptureModeenumeratedvalues

BG_USB480_CAPTURE_REALTIME
Con□gure to real-time

capture
BG_USB480_CAPTURE_REALTIME_WITH_PROTECTION Con□gure to real-time

capture with over□ow

protection
BG_USB480_CAPTURE_DELAYED_DOWNLOAD Con□gure to

delayed-download mode

Table20:BeagleUsb480TargetSpeedenumeratedvalues

BG_USB480_AUTO_SPEED_DETECT Con□gure to auto-detect the bus speed

BG_USB480_LOW_SPEED Con□gure to lockto low-speed capture

BG_USB480_FULL_SPEED Con□gure to lockto full-speed capture

BG_USB480_HIGH_SPEED Con□gure to lockto high-speed capture

ReturnValue

ABeagle statuscodeofBG_OKis returnedon successoran errorcodeas detailedinTable30.

Speci□c Error Codes

BG_STILL_ACTIVE: An attempt was made to change the con□guration while the capture was still active.

Details

These con□guration parameters specify the speed and capture mode of the Beagle USB 480

analyzer.The capture_modeoption speci□es whether the capture will be in real-time, real-time withtruncation,

or delayed-download mode. For more details on the different modes of capture,refer to Section 3.3.

The target_speedoption speci□esthespeedofcommunicationonthetargetbus.TheBeagleUSB 480 Analyzer

maybe con□gured to auto-detect the speed, or mayalternatively be lockedto monitor only a single

communication speed.

www.pc17.com.cn

Enable Digital Output (bg_usb480_digital_out_con□g)

int bg_usb480_digital_out_config (Beagle beagle,

u08 out_enable_mask,

u08 out_polarity_mask);

Enable Beagle analyzer to output a speci□c match type on output pins.

Arguments

beagle: handle of a Beagle analyzer out_enable_mask: bitmaskof enabled output pins as detailedinTable

21 out_polarity_mask: bitmaskof polarity on outputs pins as detailedinTable 22

Table21:Digital Output Pin Enable bit mask

BG_USB480_DIGITAL_OUT_ENABLE_PIN1 Enables Output Pin 1

BG_USB480_DIGITAL_OUT_ENABLE_PIN2 Enables Output Pin 2

BG_USB480_DIGITAL_OUT_ENABLE_PIN3 Enables Output Pin 3

BG_USB480_DIGITAL_OUT_ENABLE_PIN4 Enables Output Pin 4

Table22:Digital Output PinPolarity bit mask

BG_USB480_DIGITAL_OUT_PIN1_ACTIVE_HIGH

BG_USB480_DIGITAL_OUT_PIN1_ACTIVE_LOW
Output Pin 1idles low

Output Pin 1idles high

BG_USB480_DIGITAL_OUT_PIN2_ACTIVE_HIGH

BG_USB480_DIGITAL_OUT_PIN2_ACTIVE_LOW
Output Pin 2idles low

Output Pin 2idles high

BG_USB480_DIGITAL_OUT_PIN3_ACTIVE_HIGH

BG_USB480_DIGITAL_OUT_PIN3_ACTIVE_LOW
Output Pin 3idles low

Output Pin 3idles high

BG_USB480_DIGITAL_OUT_PIN4_ACTIVE_HIGH

BG_USB480_DIGITAL_OUT_PIN4_ACTIVE_LOW
Output Pin 4idles low

Output Pin 4idles high

ReturnValue

ABeagle statuscodeofBG_OKis returnedon successoran errorcodeas detailedinTable30.

Speci□c Error Codes

BG_CONFIG_ERROR: An attempt was made to set an invalid con□guration.

Details

Pins aretriggeredbyparticularevents which are detailedin Section 3.3. Pleasereferto Sec-

tion 2.1for the hardware speci□cationsof the output pins.The out_enable_maskinput is a bitmask of the

parameters listed in Table 21. By using abit-wiseORoperation,multiple

outputpinscanbeenabled.Itisimportanttonotethat callingthis function will disable all pins that are not explicitly

set in the out_enable_maskinput.

The out_polarity_maskinput con□gures the polarity of the output. Like out_enable_mask,this bitmask allows

the user to con□gure multiple pins through a bit-wise OR operation. Thedefault con□guration is active low. If

a pin is attempted to be con□gured as both active low andactive high, then it will only actually con□gure to

active high.

Digital output lines will activate as soon as their triggering event is fully con□rmed.

www.pc17.com.cn

MatchDigital Output (bg_usb480_digital_out_match)

int bg_usb480_digital_out_match (

Beagle beagle,

BeagleUsb480DigitalOutMatchPins pin_num,

BeagleUsb480PacketMatch packet_match,

* BeagleUsb480DataMatch

data_match);

*

Enable Beagle analyzerto output matchonaparticularbus data.

Arguments

beagle: handle of a Beagle analyzer pin_num: outputpinstobe enabledas detailedinTable 23 packet_match:

USB packet header information and boolean operations that the Beagle ana-

lyzer can match packet headers with data_match: USB packet data and

boolean operations thatthe Beagle USB 480 analyzer can match incoming

packet data with

ReturnValue

ABeagle statuscodeofBG_OKis returnedon successoran errorcodeas detailedinTable30.

Speci□c Error Codes

BG_STILL_ACTIVE: An attempt was made to change the con□guration while the capture was still active.

BG_CONFIG_ERROR: An attempt was made to set an invalid con□guration.

Details

The function is used to con□gure the output pins of the digital I/O port to trigger on speci□c

events. This function shouldbe called repeatedlyfor eachpin thatmustbe con□gured. Output pins 1 and

2 do not use the packet_matchand data_matchinputs, as they do not require that extra information.

They are therefore completely con□gurable from the bg_usb480_out_config()function and calling this

function on either of those pins will re-turn BG_CONFIG_ERROR.

Output pin 3 does not use the data_matchinput because it does not have that functional-ity. Therefore,

calling this function with a non-NULL value in data_matchwill also return BG_CONFIG_ERROR.

The BeagleUsb480PacketMatchand BeagleUsb480DataMatchmust be used to correctly

con□gure the matching capabilitiesof Output Pins3and4.The BeagleUsb480PacketMatchstructure

describes the packet parameters that need to bematched.

/* Digital ouput matching configuration */ struct BeagleUsb480PacketMatch {

www.pc17.com.cn

BeagleUsb480MatchType pid_match_type;

u08 pid_match_val;

BeagleUsb480MatchType dev_match_type;

u08 dev_match_val;

BeagleUsb480MatchType ep_match_type;

u08 ep_match_val;

};

The BeagleUsb480DataMatchstructure describes the data sequence that need to be matched.

struct BeagleUsb480DataMatch {

BeagleUsb480MatchType data_match_type;

u08 data_match_pid;

u16 data_length;

u08 data;

*

u16 data_valid_length;

u08 data_valid;

*

};

The BeagleUsb480MatchTypeenumerated type is used throughout the two structures to de-termine whether the

match should assert on the values being equal, not equal, or don’t care (disabled). The different enumerated types

are describedin thefollowing table.

Table24:BeagleUsb480MatchTypeenumeratedvalues

BG_USB480_MATCH_TYPE_DISABLED The match type is disabled

BG_USB480_MATCH_TYPE_EQUAL The match type must equal

BG_USB480_MATCH_TYPE_NOT_EQUAL The match type must not equal

The BeagleUsb480DataMatchstructure has its own □eld for checking PIDs. This □eld is a bitmaskfor eachof

thefour typesof data packets andis describedin thefollowing table.

Table25:Data Match PID bit mask

BG_USB480_DATA_MATCH_DATA0 Enable match on data with DATA0PID

BG_USB480_DATA_MATCH_DATA1 Enable match on data with DATA1PID

BG_USB480_DATA_MATCH_DATA2 Enable match on data with DATA2PID

BG_USB480_DATA_MATCH_MDATA Enable match on data with MDATAPID

Since the BeagleUsb480DataMatchhas itsown □eldsfor matching the PID,using the structure will therefore overwrite

the PID settings de□ned in BeagleUsb480PacketMatch. Furthermore, the data matching is determined through two

arrays. The dataarraydetermines which values the userwouldliketo match.The □ rstbyteofthisarray would

correlatetothe□rstbyteofthe packet. The second array, data_valid, determines which of thosebytes in the

dataarray arevalidfor matching. Settingabytetozeroin the data_validarray means that byte is a don’t-care

conditionfor the matching algorithm.

Thedigital outputsactivateas soonastheirtriggeringeventcanbefully con□rmed. Thus,Pins1 and2will activate as

soon as the capture activates or rxactive goes high, respectively. However,

www.pc17.com.cn

Pins3and4must assureamatchofalloftheircharacteristics. Therefore,onlyonceallpossible PIDs, device

address, and endpoints of a given packet are checked completely can the output activate.The

assertionof matcheddataonPin4 mustwaituntiltheendofthedatapacketto

assureamatch.Packetsthatareshorterthenwhatis de□nedbythe

BeagleUsb480DataMatchstructuremaystillactivatePin4ifallthedatauptothatpoint matched correctly.

Enable USB 480 Digital Input (bg_usb480_digital_in_con□g)

int bg_usb480_digital_in_config (Beagle beagle,

u08 in_enable_mask);

Enablesthe analyzerto sendaneventon changestotheexternal inputsonthe DigitalI/Oport.

Arguments

beagle: handle of a Beagle analyzer in_enable_mask: bitmaskof enabled input pins as detailedinTable 26

Table26:Digital Input Pin Enable bit mask

BG_USB480_DIGITAL_IN_ENABLE_PIN1 Enable input pin 1

BG_USB480_DIGITAL_IN_ENABLE_PIN2 Enable input pin 2

BG_USB480_DIGITAL_IN_ENABLE_PIN3 Enable input pin 3

BG_USB480_DIGITAL_IN_ENABLE_PIN4 Enable input pin 4

ReturnValue

ABeagle statuscodeofBG_OKis returnedon successoran errorcodeas detailedinTable30.

Speci□c Error Codes

None.

Details

The Beagle USB 480 analyzer digital I/O port hasfour pins allocatedfor digital inputs. These digital

inputs will display events in-line with collected data. For further details on the digital inputs refer to

Section 2.1 and Section 3.3.

The in_enable_maskisa bitmaskof the parameters listedinTable 26.By usinga bit-wiseOR operation,

multiple input pins can be enabled. It is important to note that calling this function will disable all pins

that are not explicitly set in the enable_maskinput.

Enable Hardware Filter (bg_usb480_hw_□lter_con□g)

int bg_usb480_hw_filter_config (Beagle beagle,

u08 filter_enable_mask};

Specify hardware □ltering modes.

Arguments

beagle: handle of a Beagle analyzer filter_enable_mask: hardware □ltering con□guration de□nitions

as detailedinTable 27

ReturnValue

www.pc17.com.cn

Table27:Hardware Filter Enable bit mask

BG_USB480_HW_FILTER_PID_SOF Filter SOFpackets

BG_USB480_HW_FILTER_PID_IN Filter IN+ACKIN+NAKpacket groups

BG_USB480_HW_FILTER_PID_PING Filter PING+NAKpacket groups

BG_USB480_HW_FILTER_PID_PRE Filter PREpacket groups
BG_USB480_HW_FILTER_PID_SPLIT Filter SPLITpacket groups

BG_USB480_HW_FILTER_SELF Filter packets intended for Beagle

analyzer

ABeagle statuscodeofBG_OKis returnedon successoran errorcodeas detailedinTable30.

Speci□c Error Codes

None.

Details

The Beagle USB 480 Analyzer is capable of □ltering out data-less transactions before being savedfor

capture. This option can be especially usefulfor saving memory on the analysis PC and on the

hardwarebuffer.

To enable the □ltering, simply use the bitmask detailed in Table 27. By using a bit-wise OR operation,

multiple □lters can be enabled. It is important to note that calling this function will disable all □lters

that are not explicitly set in the filter_configinput.

For more detailed information on the hardware □lters, please refer to Section3.3.

USB Buffer Statistics (bg_usb480_hw_buffer_stats)

int bg_usb480_hw_buffer_stats (Beagle beagle,

u32 buffer_size,

* u32 buffer_usage,

* u08 buffer_full);

*

Outputs real time statisticsfor the on-boardbuffer.

Arguments

beagle: handle of a Beagle analyzerbuffer_size: total sizeof the hardwarebufferbuffer_usage:

amountof space usedin the hardwarebufferbuffer_full: indicates whether thebufferis full

ReturnValue

ABeagle statuscodeofBG_OKis returnedon successoran errorcodeas detailedinTable30.

Speci□c Error Codes

None.

Details

The function returns up-to-date statistical information about the on-board hardwarebuffer. This is

especially useful for delayed-download captures to poll the status of the buffer. However, calling this

function issues a short communication between the Beagle USB 480 analyzer and

theanalysisPC.IftheBeagleanalyzerisonthesamebusthatitis monitoring,thencallstothis

www.pc17.com.cn

function will take upbus bandwidth and can take up on-board memoryspace due to the USB broadcast

architecture(see Section 1.1).Ifbus bandwidthisa concern,then pollingthebuffer shouldbekepttoa

minimum. If pollingis required, thenitis recommended that Self Filtering be enabled in order to eliminate

the packets intendedfor the Beagle analyzer, and thus save on-board memory.

Read USB (bg_usb480_read)

int bg_usb480_read (Beagle beagle,

u32 status,

* u32 events,

* u64 time_sop,

* u64 * time_duration, u32

time_dataoffset,

* int max_bytes, u08

packet);

*

Read data from USB port.

Arguments

beagle: handle of a Beagle analyzer status: □lled with status bitmask as detailedinTable 9andTable 17

events: □lled withevent bitmask as detailedinTable 18 time_sop: timestamp when the data read begins

time_duration: number of ticks that it took to read the data time_dataoffset: timestamp when data

appeared on thebus max_bytes: maximumnumberofbytesto read packet: arrayofbytes whichis □lled

with the received data

ReturnValue

This function returns thenumberofbytes read ora negativevalue indicating an error.

Speci□c Error Codes

None.

Details

The function willblockuntil the requested amountof datais captured,a completepacket with the

appropriate end of packet condition is observed, or thebus is idlefor longer than the time-out interval

set. See Section 6.4 for information on the bg_latency()and bg_timeout()functions which affect the

behavior of this function.

The packetarrayshould be allocated at least as large as max_bytes. All of the

timing data is measured in ticks of the sample rate clock.

The □rstbyteof the USB packetis the packetID.An enumerationis provided that de□nes all the

possible packet IDsinTable 16.

In additiontothegeneralreadstatusvaluesinTable 9,therearesomeUSBspeci□

cstatusval-uesenumeratedinTable 17. The user shouldbeawareofthe BG_READ_USB_END_OF_CAPTURE

www.pc17.com.cn

status code, this is speci□c to the Beagle USB 480 analyzer and will be returned if the

bg_usb480_read()function is called after a capture has completed.

The eventsenumeration describes speci□c events that have occurred during the USB cap-ture. By

masking the eventsvalue with the ones detailed inTable 18, the user can determine whether a speci□c

event has occurred.

It should also be noted that if a packet is returned when in truncated mode, the packet length

willbelimitedto4bytes.The functionwillstillreturnthetruelengthofthepacket,howeveronly uptothe □

rst4bytesofdatawillbe insertedintothe packetarray. The remainingbytes willbe □lled with 0s.

Also,theuseofdigitalinputsmay causecertainbuseventstoappearoutoforder.SeeSection 3.3for more

information.

Reconstruct Bit Timing (bg_usb480_reconstruct_timing)

int bg_usb480_reconstruct_timing (BeagleUsb480TargetSpeed speed,

int num_bytes,

u08 packet,

*

int max_timing,

u32 bit_timing);

*

Reconstruct the bit-level timing of a packet.

Arguments

speed: thebus speedof the packet num_bytes:numberofbytestodothe reconstructionon packet: an

arraycontaining the packetbytes max_timing: maximum number of bits to do the reconstruction on

bit_timing: allocated arrayof u32which is □lled with the duration of each of the bits

ReturnValue

ABeagle statuscodeofBG_OKis returnedon successoran errorcodeas detailedinTable30.

Speci□c Error Codes

None.

Details

The Beagle USB 480 analyzer is restricted to packet-level timing of the capture data. However, this

function provides a bit-level timing reconstruction based upon the data and the speed of the bus.

The bit_timingarraywill be □lled with the duration of each of the bits in the packetarray. The duration

of each bit is provided in counts of a 480 MHz clock, corresponding to approximately a2 nsresolution.

Those bits that arefollowedby a bit-stuff willhaveaduration thatis twiceas long asa normal bit timefor

that speed.

The bit_timingarray should be allocated at least as large as max_timing. Use the func-tion

bg_bit_timing_size()(in Section 6.4)to determine how large an array to allocatefor bit_timing.

www.pc17.com.cn

6.9 MDIO API

Notes

The MDIO API functions are onlyavailablefor the BeagleI
2

C/SPI/MDIO Protocol Analyzer.

MDIO Monitor Interface

Read MDIO (bg_mdio_read)

int bg_mdio_read (Beagle beagle,

u32 status,

* u64 time_sop,

* u64 time_duration,

* u32 time_dataoffset,

* u32 data_in);

*

Read data from the MDIO port.

Arguments

beagle: handle of a Beagle analyzer status: □lled with the status bitmask as detailedinTable 9

time_sop: □lled with the timestamp when the frame preamble begins time_duration: □lled

with the number of ticks that fromtime_sopto the last bit of the MDIO

frame time_dataoffset: □lledwiththenumberofticksfromtime_sopuntil the end of the

preamble data_in: a pointer to a u32value which is □lled with the received MDIO data

ReturnValue

This function returns thenumberofbytes read ora negativevalue indicating an error.

Speci□c Error Codes

None.

Details

The functionwillblock untila completeframeis capturedorthebusisidleforlongerthanthe timeout

interval set. See Section 6.4for information on thebg_latency()and bg_timeout()functions

which affect the behavior of this function.

All of the timing data is measured in ticks of the sample clock.

Read MDIO with bit-level timing (bg_mdio_read_bit_timing)

int bg_mdio_read_bit_timing (Beagle beagle,

u32 * status,

u64 time_sop,

* u64 time_duration,

* u32 time_dataoffset,

* u32 data_in

* int max_timing, u32

bit_timing);

*

www.pc17.com.cn

Read data from the MDIO port.

Arguments

common_args: see bg_mdio_read()for common arguments max_timing: size of bit_timingarray bit_timing:

an allocated arrayof u32whichis □lled with the timing datafor each bit read

ReturnValue

This function returns thenumberofbytes read ora negativevalue indicating an error.

Speci□c Error Codes

None.

Details

This functionisanextensionofthe bg_mdio_read()function withthe addedfeatureof bit-leveltiming. All of

the bg_mdio_read()arguments and details apply.

The values in the bit_timingarraygive the offset of each bit from time_sop.The bit_timingarray should

be allocated at least as large as max_timing. Use the func-tion bg_bit_timing_size()(in Section 6.4)to

determine how large an array to allocatefor

bit_timing.

Thebit timeforthe □nalbitoftheframeisalwayszero. Thisisduetothefact thatthebit timesare measured

between rising edges of the MDC line. The □rst bit time is measured from the□rst rising edge of the

MDC line to the next rising edge. For the last bit of a frame, there maynot be a subsequent rising edge

of the MDC line until the next frame. Therefore, no bit timevalue canbe determinedfor □nal

bitofaframe.

Parse MDIO data (bg_mdio_parse)

int bg_mdio_parse (u32 packet,

u08 clause,

*

u08 opcode,

*

u08 addr1,

*

u08 addr2,

*

u16 data);

*

Parses packet into □eld values.

Arguments

packet: the MDIO frame to parse clause: □lled with the clauseof theframe as detailedinTable 28 opcode:

□lled with theOP codeof theframe as detailedinTable 29 addr1: □lled with the value of the □rst

address □eld (PHY in Clause 22, port in Clause 45) addr2: □lled with the value of the second address

□eld (reg in Clause 22, device in Clause 45) data: □lled with the contentsof the data portionof

theframe

ReturnValue

ABeagle statuscodeofBG_OKis returnedon successoran errorcodeas detailedinTable30.

Speci□c Error Codes

www.pc17.com.cn

Table28:MDIO Clause de□nitions

BG_MDIO_CLAUSE_22 0x00 MDIO Clause 22

BG_MDIO_CLAUSE_45 0x01 MDIO Clause 45

BG_MDIO_CLAUSE_ERROR 0x02 Unknown value in clause □eld

Table29:MDIO Opcode de□nitions

BG_MDIO_OPCODE22_WRITE 0x01 Clause 22 write OP code

BG_MDIO_OPCODE22_READ 0x02 Clause 22 read OP code

BG_MDIO_OPCODE22_ERROR 0xff Clause 22 unknown OP code

BG_MDIO_OPCODE45_ADDR 0x00 Clause 45 address OP code

BG_MDIO_OPCODE45_WRITE 0x01 Clause 45 write OP code
BG_MDIO_OPCODE45_READ_POSTINC 0x02 Clause 45 post read increment

ad-dress OP code

BG_MDIO_OPCODE45_READ 0x03 Clause 45 read OP code

BG_MDIO_BAD_TURNAROUND: An unexpected value in turnaround □eld of the frame.

Details

The return value will indicate validity of the turnaround □eld. BG_OKindicates the value of the turnaround □

eld is valid. BG_MDIO_BAD_TURNAROUNDindicates an invalid value in the turnaround □eld.

www.pc17.com.cn

6.10 Error Codes

Table30:Beagle API Error Codes

Literal Name Value bg_status_string() return value

BG_OK 0 ok

BG_UNABLE_TO_LOAD_LIBRARY -1 unable to load library

BG_UNABLE_TO_LOAD_DRIVER -2 unable to load usb driver

BG_UNABLE_TO_LOAD_FUNCTION -3 unable to load function

BG_INCOMPATIBLE_LIBRARY -4 incompatible library version
BG_INCOMPATIBLE_DEVICE -5 incompatible device version

BG_INCOMPATIBLE_DRIVER -6 incompatible driver version

BG_COMMUNICATION_ERROR -7 communication error

BG_UNABLE_TO_OPEN -8 unable to open device
BG_UNABLE_TO_CLOSE -9 unable to close device

BG_INVALID_HANDLE -10 invalid device handle

BG_CONFIG_ERROR -11 con□guration error

BG_UNKNOWN_PROTOCOL -12 unknown beagle protocol
BG_STILL_ACTIVE -13 beagle still active

BG_FUNCTION_NOT_AVAILABLE -14 beagle function not available

BG_COMMTEST_NOT_AVAILABLE -100 comm test feature not available

BG_COMMTEST_NOT_ENABLED -101 comm test not enabled

BG_I2C_NOT_AVAILABLE -200 i2c feature not available
BG_I2C_NOT_ENABLED -201 i2c not enabled

BG_SPI_NOT_AVAILABLE -300 spi feature not available

BG_SPI_NOT_ENABLED -301 spi not enabled

BG_USB_NOT_AVAILABLE -400 usb feature not available
BG_USB_NOT_ENABLED -401 usb not enabled

BG_MDIO_NOT_AVAILABLE -500 mdio feature not available

BG_MDIO_NOT_ENABLED -501 mdio not enabled

BG_MDIO_BAD_TURNAROUND -502 mdio bad turnaround □eld

www.pc17.com.cn

7 Legal/Contact

7.1 Disclaimer

Allof the software and documentation providedinthis datasheet,is copyrightTotal Phase, Inc.

(“Total Phase”). License is granted to the user to freely use and distribute the software and

documentationin completeand unalteredform,provided thatthepurposeisto useorevaluate

Total Phase products. Distribution rights do not include public posting or mirroring on Internet

websites.OnlyalinktotheTotalPhasedownload areacanbeprovidedonsuchpublicwebsites.

Total Phase shallinnoeventbe liabletoanypartyfor direct, indirect, special, general, inciden-tal,

or consequential damages arising from the use of its site, the software or documentation

downloaded from its site, or any derivative works thereof, even if Total Phase or distributors

have been advised of the possibility of such damage. The software, its documentation, and any

derivative works is provided on an “as-is” basis, and thus comes with absolutely no war-ranty,

eitherexpressor implied. This disclaimer includes,butisnot limitedto, impliedwarranties of

merchantability, □tnessfor any particular purpose, and non-infringement. Total Phase and

distributors have no obligation to provide maintenance, support, or updates.

Information in this document is subject to change without notice andshould not be construed

as acommitmentbyTotal Phase. Whiletheinformation contained hereinis believedtobe accurate,

Total Phase assumes no responsibilityfor anyerrors and/or omissions that mayappear in this

document.

7.2 Life Support EquipmentPolicy

Total Phase products are not authorizedfor usein life supportdevices or systems. Life

support devices or systems include, but are not limited to, surgical implants, medical systems,

and other safety-critical systems in which failure of a Total Phase product could cause

personal injury or lossof life. ShouldaTotal Phase productbe usedin such an unauthorized

manner, Buyer agrees to indemnify and hold harmless Total Phase, its of□cers, employees, af

□liates, and distributors from anyand all claims arising from such use, even if such claim

alleges that Total Phase was negligent in the design or manufacture of its product.

7.3 Contact Information

Total Phase can befound on the Internet at http://www.pc17.com.cn/. Ifyou have

support-related questions, please email the product engineers at support@pc17.com.cn.For

sales inquiries, please contact sales@pc17.com.cn.

©2005–2008Total Phase, Inc. Allrights reserved. TheTotal Phase name and logo and all product names and

logosaretrademarksofTotalPhase,Inc.Allothertrademarksandservicemarksarethe propertyoftheir

respectiveowners.

www.pc17.com.cn

List of Figures

1 Sample USB Bus Topology . 3

2 USB Broadcast . 3

3 USB Cable . 4

4 Token Packet Format . 8

5 Start-Of-Frame (SOF) Packet Format . 9

6 Data Packet Format . 9

7 Handshake Packet Format . 9

8 The Three Phases of a USB Data Transfer . 9

9 Split Bulk Transactions . 11

10 Extended Token Transaction . 12

11 USB Descriptors . 13

12 Sample I2C Implementation . 16

13 I2C Protocol . 17

14 Sample SPI Implementation . 18

15 SPI Modes . 19

16 Basic MDIO Frame Format . 21

17 Extended MDIO Frame Format . 21

18 Beagle USB 480 Protocol Analyzer -Analysis Side 23

19 Beagle USB 480 Protocol Analyzer -Capture Side 23

20 Beagle USB 480 Protocol Analyzer -Digital I/O Port Pinout 24

21 Beagle USB 480 Protocol Analyzer -LED Indicators 25

22 Beagle USB 12 Protocol Analyzer -Analysis Side 26

23 Beagle USB 12 Protocol Analyzer -Capture Side 27

24 Beagle USB 12 Protocol Analyzer -LED Indicators 27

25 The Beagle I2C/SPI/MDIO Protocol Analyzer in the upright position 29

26 The Beagle I2C/SPI/MDIO Protocol Analyzer in the upside down position 29

27 Beagle USB Protocol Analyzer Connections 32

List of Tables

 Differential Signal Encodings . 5

 USB Packet Types . 8

 Clause 22 format . 21

 Clause 45 format . 22

 Digital I/O Cable Pin Assignments . 24

 Power Flag de□nitions . 57

 Interface Speed de□nitions . 58

 BeagleProtocolenumerated values . 61

 Read Status de□nitions . 63

 Pullup de□nitions . 64

 I2CSpeci□c Read Status de□nitions . 65

 I2CData Mask constants . 65

www.pc17.com.cn 90

13 SPISSPolarity de□nitions 68

14 SPISCK SamplingEdge de□nitions 68

15 SPIBitOrder de□nitions 68

16 USBPacketID de□nitions 72

17 USBRead Status de□nitions 73

18 USBEventCode de□nitions 73

19 BeagleUsb480CaptureModeenumeratedvalues 77

20 BeagleUsb480TargetSpeedenumeratedvalues 77

21 DigitalOutputPinEnablebitmask 78

22 DigitalOutputPinPolaritybitmask 78

23 BeagleUsb480DigitalOutMatchPinsenumeratedvalues 79

24 BeagleUsb480MatchTypeenumeratedvalues 80

25 DataMatchPIDbitmask 80

26 DigitalInputPinEnablebitmask 81

27 Hardware FilterEnablebitmask 82

28 MDIO Clause de□nitions 87

29 MDIOOpcode de□nitions 87

30 BeagleAPIErrorCodes 88

Contents

1 General Overview 2

1.1 USBBackground 2

USB History 2

ArchitecturalOverview 2

TheoryofOperations 4

USB Connectors 4

USB Signaling 5

BusSpeed 5

EndpointsandPipes 6

USBPackets 7

EnumerationandDescriptors 12

DeviceClass 14

On-The-Go(OTG) 14

References 15

1.2 I
2

CBackground 16

I
2

CHistory 16

I
2

CTheoryofOperation 16

I
2

CFeatures 17

I
2

CBene□tsandDrawbacks 17

I
2

CReferences 17

1.3 SPIBackground 18

SPI History 18

SPITheoryofOperation 18

www.pc17.com.cn

SPIModes 19

SPI Bene□tsandDrawbacks 19

SPIReferences 19

1.4 MDIOBackground 20

MDIO History 20

MDIOTheoryofOperation 20

Clause22 20

Clause45 21

MDIOReferences 22

2 Hardware Speci□cations 23

2.1 BeagleUSB480 ProtocolAnalyzer 23

Connector Speci□cation 23

DigitalI/O 25

On-boardBuffer 25

Hardware Filters 25

Signal Speci□cations/Power Consumption 26

Speed.................................... 26

ESD Protection 26

Power consumption............................. 26

2.2 BeagleUSB12 ProtocolAnalyzer 26

Connector Speci□cation 26

Signal Speci□cations/Power Consumption 28

Speed.................................... 28

ESD protection 28

Power consumption............................. 28

2.3 BeagleI
2

C/SPI/MDIO ProtocolAnalyzer 28

Connector Speci□cation 28

Orientation 28

OrderofLeads 28

Ground 29

I
2

CPins 29

SPIPins 30

MDIOPins 30

PoweringDownstreamDevices 30

Signal Speci□cations/Power Consumption 30

Speed.................................... 30

LogicHighLevels 31

ESD protection 31

Power Consumption 31

2.4 USB2.0 31

2.5 Temperature Speci□cations 31

www.pc17.com.cn

3 Device Operation 32

3.1 Electrical Connections 32

BeagleUSB ProtocolAnalyzers 32BeagleI
2

C/SPI/MDIO ProtocolAnalyzer 33

3.2 SoftwareOperationalOverview 34

3.3 BeagleUSB480 ProtocolAnalyzer Speci□cs 34

BusEvents 34

OTGEvents 35

DigitalInputs 35

DigitalOutputs 35

Hardware Filtering 36

FiltersandDigitalI/O 37

CaptureModes 37 Real-timeCapture 37 Real-time Capture with

Over□ow Protection 38 Delayed-downloadCapture 38

3.4 BeagleI
2

C/SPI/MDIO Protocol Analyzer Speci□cs 39 SamplingRate

39

4 Software 40

4.1 Compatibility 40

Linux .. 40

Windows 40

4.2 LinuxUSBDriver 40

UDEV.. 40

USBHotplug 40

World-WritableUSB Filesystem 41

4.3 WindowsUSBDriver 41

Driver Installation 41

DriverRemoval 43

4.4 USBPort Assignment 43

DetectingPorts 43

4.5 Beagle DynamicallyLinkedLibrary 43

DLL Philosophy 43

DLL Location 44

DLLVersioning 44

4.6 Rosetta Language Bindings: API Integration into Custom Applications 45

Overview 45 Versioning 45

Customizations................................... 46

4.7 ApplicationNotes 46

ReceiveSaturation 46

Threading 46

www.pc17.com.cn

5 Firmware 47

5.1 Philosophy 47

5.2 Procedure 47

6 API Documentation 48

6.1 Introduction..................................... 48

6.2 GeneralDataTypes 48

6.3 Noteson StatusCodes 48

6.4 General 50

Interface 50

FindDevices (bg_□nd_devices) 50

FindDevices (bg_□nd_devices_ext) 50

OpenaBeagleanalyzer (bg_open) 51

OpenaBeagleanalyzer (bg_open_ext) 51

Close a Beagle analyzer connection (bg_close) 53

GetFeatures(bg_features) 53

GetFeaturesbyUniqueID (bg_unique_id_to_features) 54

GetPort(bg_port) 54

GetUniqueID (bg_unique_id) 54

StatusString (bg_status_string) 55

Version(bg_version) 55

CaptureLatency (bg_latency) 56

TimeoutValue (bg_timeout) 56

Sleep (bg_sleep_ms) 57

TargetPower (bg_target_power) 57

Host Interface Speed (bg_host_ifce_speed) 58

Buffering 58 Host BufferSize (bg_host_buffer_size) 58

Available Read Buffering (bg_host_buffer_free) 59 Used Read Buffering

(bg_host_buffer_used) 60 Communication Speed

Benchmark(bg_commtest) 60

MonitoringAPI 60

Enable Monitoring (bg_enable) 60

Stop Monitoring (bg_disable) 61

SampleRate (bg_samplerate) 61

BitTimingSize (bg_bit_timing_size) 62

6.5 Noteson Protocol-Speci□cRead Functions 63

6.6 I
2

CAPI 64

Notes.. 64

I
2

CMonitor Interface 64

I
2

CPullups (bg_i2c_pullup) 64 ReadI
2

C(bg_i2c_read) 64 ReadI
2

Cwith

data-level timing (bg_i2c_read_data_timing) 65

www.pc17.com.cn

ReadI
2

Cwith bit-level timing (bg_i2c_read_bit_timing) 66

6.7 SPIAPI 68

Notes.. 68

SPI Monitor Interface 68

SPI Con□guration (bg_spi_con□gure) 68 ReadSPI (bg_spi_read) 69 Read

SPI with data-level timing (bg_spi_read_data_timing) 70 Read SPI with bit-level timing

(bg_spi_read_bit_timing) 70

6.8 USBAPI 72 Notes.. 72 USB12 Monitor Interface

74 ReadUSB (bg_usb12_read) 74 Read USB with data-level timing (bg_usb12_read_data_timing)

74 Read USB with bit-level timing bg_usb12_read_bit_timing) 75

USB480 Monitor Interface 77 Con□gure USB 480 Capture (bg_usb480_capture_con

□gure) 77 Enable Digital Output (bg_usb480_digital_out_con□g) 78 Match Digital

Output (bg_usb480_digital_out_match) 79 Enable USB 480 Digital Input

(bg_usb480_digital_in_con□g) 81 Enable Hardware Filter (bg_usb480_hw_□lter_con□

g) 81 USB Buffer Statistics (bg_usb480_hw_buffer_stats) 82 ReadUSB

(bg_usb480_read) 83 Reconstruct Bit Timing (bg_usb480_reconstruct_timing)

84

6.9 MDIOAPI 85

Notes.. 85

MDIO Monitor Interface 85

ReadMDIO (bg_mdio_read) 85 Read MDIO with bit-level timing

(bg_mdio_read_bit_timing) 85 ParseMDIOdata (bg_mdio_parse) 86

6.10 ErrorCodes 88

7 Legal/Contact 89

7.1 Disclaimer 89

7.2 LifeSupport EquipmentPolicy 89

7.3 ContactInformation 89

北京迪阳世纪科技有限公司代理美国TOTALPHASE公司全系列产品:

 www.pc17.com.cn 010-62156134 62169728

